
Towards a core language with row-based effects for
optimised compilation

Axel Faes

student : undergraduate

ACM Student Member: 2461936

Department of Computer Science

KU Leuven

axel.faes@student.kuleuven.be

Tom Schrijvers

advisor

Department of Computer Science

KU Leuven

tom.schrijvers@kuleuven.be

Abstract
Algebraic effects and handlers are a very active area of re-

search. An important aspect is the development of an opti-

mising compiler. Eff is an ML-style language with support

for effects and forms the testbed for the optimising compiler.

However, Eff does not offer explicit typing, which makes it

easy for type checking bugs to be introduced during the con-

struction of optimised compilation. This work presents a new

core language with row-based effects. The core language

is explicitly typed in order to reduce bugs in the optimised

compilation.

Keywords algebraic effect handler, row based effect, opti-

mised compilation

1 Introduction
Algebraic effect handling is a very active area of research.

Implementations of algebraic effect handlers are becom-

ing available. Because of this, improving performance is

becoming the focus of research. A lot of research focusses

on speeding up the runtime performance. However, a run-

time penalty still occurs. This happens since handlers or

continuations need to be repeatedly copied on the heap.

Due to this, we are looking towards type-directed optimised

compilation of algebraic effect handlers. We want to remove

the handlers such that no copying is required and thus no

runtime penalty occurs.

In our ongoing research towards type-directed optimised

compilation, term rewrite rules and purity aware compila-

tion optimise away most handlers. Term rewrite rules use

information of the type-&-effect system. Term rewrite rules

perform two types of actions. They remove handlers and

apply effects such that eventually the program does not con-

tain any more handlers. Term rewrite rules can also change

the syntactic structure in order to expose more possibilities

for optimisations. Purity aware compilation identifies com-

putations that are effectively pure and purifies them.

Eff, an ML-style language, is being used to develop an op-

timised compiler for algebraic effect handlers. Eff uses a

type system based on subtyping [1]. As explained by Bauer

and Pretnar in [2], terms in Eff do not contain any infor-

mation about computational effects. This information has

to be inferred using type inference algorithms. The lack of

explicit type information makes source-to-source transfor-

mations much more error-prone. Additionally, ensuring that

a transformation does not break typeability becomes a time-

consuming task, since we need to reconstruct types after

each optimisation pass.

The current type system with subtyping becomes impracti-

cal since the typing information is not explicitly contained

in each term. There are several solutions to make the type

system more practical. It is possible to keep subtyping, but

use a unification based algorithm [3]. Implicit effect poly-

morphism can also be used [7]. The option that is explored

in this work, is to use a simple type-&-effect system based

on row-polymorphism [4–6].

In this work, we present a simple explicitly-typed language

that can serve as an intermediate language during com-

pilation of Eff, and allows for the development of type-

preserving core-to-core transformations. Optimisation and

term rewriting is done using this core language. This ap-

proach will ease the development of an optimised compiler

since typechecking becomes linear due to the explicit typing.

2 Background
The type-&-effect system that is used in Eff is based on

subtyping and dirty types [1].

Terms Figure 1 shows the two types of terms in Eff. There

are values v and computations c . Computations are terms

that can contain effects. Effects are denoted as operations

Op which can be called.

Types Figure 2 shows the types of Eff. There are two main

sorts of types. There are (pure) types A,B and dirty types

C,D. A dirty type is a pure type A tagged with a finite set of

operations ∆, which we call dirt, that can be called. The type

C ⇒ D is used for handlers because a handler takes an input

computation C , handles the effects in this computation and

outputs computation D as the result.

1



The core language with row-based effects is based on the

explicitly typed language used in Links [4]. Links uses a row

polymorphic type-&-effect system . The design of their cal-

culus is partially based on the type system used by Pretnar

which makes it a suitable candidate for our core language

[10]. The terms of the core language are seen in Figure 3,

the types are seen in the Figure 4.

value v ::= x variable

| k constant

| fun x 7→ c function

| { handler

return x 7→ cr , return case

[Opx k 7→ cOp]Op∈O operation cases

}

comp c ::= v1v2 application

| let rec f x = c1 in c2 rec definition

| return v returned val

| Opv operation call

| do x ← c1 ; c2 sequencing

| handle c with v handling

Figure 1. Terms of Eff as described in previous work

3 Results and Contributions
Preliminary results show that optimised compilation of Eff

reaches the same performance as an implementation with-

out algebraic effect handlers in OCaml (Figure 5). Unfortu-

nately, the development of several optimisations proved to

be very error-prone, illustrating the need for an explicitly-

typed core language.

The proposed core language with row-based effects makes

it easier to develop an optimised compiler due to the explicit

typing. Since Eff focusses on ease-of-use and usability, the

programmer will not be burdened with providing more type

information thanminimally required [8, 9]. The combination

of these languages gives the best of both worlds.

In this work, we presented an idea of a core language for

optimised compilation. Planned in future work is the imple-

mentation. We will integrate the presented core language in

(pure) type A,B ::= bool | int basic types

| A→ C function type

| C ⇒ D handler type

dirty type C,D ::= A ! ∆
dirt ∆ ::= {Op1, . . . , Opn}

Figure 2. Types of Eff as described in previous work

value v ::= x variable

| k constant

| λ(x : A).c function
| Λα .c type abstraction
| { handler

return x 7→ cr , return case

[Opx k 7→ cOp]Op∈O operation cases

}

comp c ::= v1v2 application

| v A type application
| let rec f x = c1 in c2 rec definition

| return v returned val

| Opv operation call

| do x ← c1 ; c2 sequencing

| handle c with v handling

Figure 3. Terms of the explicitly typed core language

(pure) type A,B ::= A→ C function type

| C ⇒ D handler type

| α type variable
| ∀α .C polytype

dirty type C,D ::= A ! ∆
dirt ∆ ::= {Op1, . . . , Opn}

Figure 4. Types of the explicitly type core language

2 4 6 8 10 12 14
0

50

100

150

200

Problem Size

Relative percentage

OCaml MultiCore HandlersInAction EffInOCaml Eff(PureOpt)

Figure 5. Results of running N-Queens for all solutions on

multiple systems

the optimising compiler for Eff and benchmark its impact.

The metatheory of the core language is still under develop-

ment. We will test the explicitly typed core language in other

typing systems. As mentioned in this work, another interest-

ing research direction is the development of an unification

based algorithm for the subtyping based type-&-effect sys-

tem which we will also explore in future work.

Acknowledgments
I would like to thank Amr Hany Saleh for his continuous

guidance and help. I would also like to thank Matija Pretnar

for his support during my research.

2



References
[1] Andrej Bauer and Matija Pretnar. 2014. An Effect System for Algebraic

Effects and Handlers. Logical Methods in Computer Science 10, 4 (2014).
https://doi.org/10.2168/LMCS-10(4:9)2014

[2] Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic

effects and handlers. J. Log. Algebr. Meth. Program. 84, 1 (2015), 108–
123. https://doi.org/10.1016/j.jlamp.2014.02.001

[3] Stephen Dolan and Alan Mycroft. 2017. Polymorphism, Subtyping,

and Type Inference inMLsub. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL 2017). ACM,

New York, NY, USA, 60–72. https://doi.org/10.1145/3009837.3009882

[4] Daniel Hillerström and Sam Lindley. 2016. Liberating Effects with

Rows and Handlers. In Proceedings of the 1st International Workshop
on Type-Driven Development (TyDe 2016). ACM, New York, NY, USA,

15–27. https://doi.org/10.1145/2976022.2976033

[5] Daan Leijen. 2014. Koka: Programming with row polymorphic effect

types. arXiv preprint arXiv:1406.2061 (2014).
[6] Daan Leijen. 2017. Type Directed Compilation of Row-typed Alge-

braic Effects. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2017). ACM, New York,

NY, USA, 486–499. https://doi.org/10.1145/3009837.3009872

[7] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be

Do Be Do. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2017). ACM, New York,

NY, USA, 500–514. https://doi.org/10.1145/3009837.3009897

[8] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic

Effects. Logical Methods in Computer Science 9, 4 (2013). https://doi.
org/10.2168/LMCS-9(4:23)2013

[9] Matija Pretnar. 2014. Inferring Algebraic Effects. Logical Methods
in Computer Science 10, 3 (2014). https://doi.org/10.2168/LMCS-10(3:

21)2014

[10] Matija Pretnar. 2015. An introduction to algebraic effects and handlers.

invited tutorial paper. Electronic Notes in Theoretical Computer Science
319 (2015), 19–35.

3

https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/3009837.3009882
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-10(3:21)2014
https://doi.org/10.2168/LMCS-10(3:21)2014

	Abstract
	1 Introduction
	2 Background
	3 Results and Contributions
	Acknowledgments
	References

