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Abstract
Objective. A novel method is introduced to regress over the sign language finger movements from
human electrocorticography (ECoG) recordings. Approach. The proposed graph-optimized
block-term tensor regression (Go-BTTR) method consists of two components: a deflation-based
regression model that sequentially Tucker-decomposes multiway ECoG data into a series of blocks,
and a causal graph process (CGP) that accounts for the complex relationship between finger
movements when expressing sign language gestures. Prior to each regression block, CGP is applied
to decide which fingers should be kept separate or grouped and should therefore be referred to
BTTR or its extended version eBTTR, respectively.Main results. Two ECoG datasets were used, one
recorded in five patients expressing four hand gestures of the American sign language alphabet,
and another in two patients expressing all gestures of the Flemish sign language alphabet. As
Go-BTTR combines fingers in a flexible way, it can better account for the nonlinear relationship
ECoG exhibits when expressing hand gestures, including unintentional finger co-activations. This
is reflected by the superior joint finger trajectory predictions compared to eBTTR, and predictions
that are on par with BTTR in single-finger scenarios. For the American sign language alphabet
(Utrecht dataset), the average correlation across all fingers for all subjects was 0.73 for Go-BTTR,
0.719 for eBTTR and 0.70 for BTTR. For the Flemish sign language alphabet (Leuven dataset), the
average correlation across all fingers for all subjects was 0.37 for Go-BTTR, 0.34 for eBTTR and
0.33 for BTTR. Significance. Our findings show that Go-BTTR is capable of decoding complex
hand gestures taken from the sign language alphabet. Go-BTTR also demonstrates computational
efficiency, providing a notable benefit when intracranial electrodes are inserted during a patient’s
pre-surgical evaluation. This efficiency helps reduce the time required for developing and testing a
brain–computer interface solution.

1. Introduction

Millions of individuals experience paralysis. This
can be the result from a spinal cord injury due
to, for instance, an accident. It can also occur
from brainstem stroke, or from progressive disorders
like amyotrophic lateral sclerosis (ALS) [1]. Various
assistive technologies have been proposed to provide

an alternative means of communication (for a review
see [2]), including brain computer interfaces (BCIs)
used, among others, to select letters one-by-one to
spell out words. Motor BCIs bypass the muscles of
the human body and can thus be used to restore the
function of, or replace those muscles. As discussed
in [3], electrical stimulation can be an example of
such a system. The stimulation occurs in the regions
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of the hand-knob area and the relevant spinal cord
regions associated with walked. Additionally, BCIs
contribute to the control of external limbs, such as
prosthetic hands in case of full replacement, or exo-
skeletons in case of supporting existing function,
or other effectors, as demonstrated in works such
as [4–7]. Over the last few decades, electrocortico-
graphy (ECoG) has been gaining attention in the
BCI research community, which involves electrodes
placed on top of the cortical surface to record elec-
trical activity. When ECoG signals are recorded from
the primary motor cortex, they reveal notable motor-
related spatio-temporo-spectral patterns that can be
leveraged to capture the dynamics of the correspond-
ing movement, as discussed in works such as [8–
10]. However, decoding rapid and coordinated finger
movements, as in grasping and performing hand ges-
tures, is challenging, calling for further algorithmic
developments.

Ramsey and colleagues successfully classified four
gestures based on hand motor ECoG recordings in
two subjects. These gestures were taken from the
American sign language alphabet. By extracting the
local motor potentials (LMPs) for each channel and
using temporal template matching, classification was
accomplished, as described in [11]. Li et al [12] clas-
sified three gestures (‘scissors,’ ‘rock,’ and ‘paper’)
from hand motor ECoGs in two participants using
an SVM-based classifier achieving 80% accuracy on
average in three participants. The classification results
were also translated into commands for controlling
a prosthetic hand in two participants. Pan et al [13]
classified the same three gestures but used a recur-
rent neural network (RNN) that exploits the temporal
information present in the ECoG recordings thereby
achieving 90% accuracy in two participants.

Within regression analysis, multiway approaches
are being applied more and more. As discussed in
works such as [14, 15], they are used to model arm
trajectories from ECoG signals recorded from mon-
keys. Additionally, these approaches have been util-
ized in the context of exoskeleton-based arm tra-
jectory, arm- and wrist rotations, and ECoG sig-
nals in tetraplegic patients, as highlighted in [16].
Furthermore,multiwaymethods have been employed
in the study of graded stimulation of the spinal cord
region involved in walking in tetraplegic patients, as
presented in [3]. In the latter two scenarios, multi-
way partial least squares regression (NPLS) or a vari-
ation thereof is used within the decoders. However,
this approach falls short in achieving the required
level of accuracy for decoding fine finger movements,
as discussed in [16]. This limitation may be attrib-
uted to factors such as limited fitness capacity, high
computational complexity, and slow convergence of
NPLS, particularly when dealing with higher-order

data, as highlighted in [14]. On a more promising
note, Zhao et al [14] have introduced a robust gen-
eralized framework known as higher-order partial
least squares (HOPLS). This framework is founded
on a (1,L2, . . .,LN)-rank block term decomposition
(BTD), where all blocks share the same multilinear
rank, referred to as multilinear tensor rank (MTR).
HOPLS provides an optimal balance between fitness
and model complexity, resulting in enhanced pre-
dictability. Consequently, HOPLS has demonstrated
superior performance compared to conventional par-
tial least squares (PLS) approaches.

Camarrone and colleagues recently introduced
block-term tensor regression (BTTR) as detailed in
[17, 18]. BTTR is grounded in Tucker decomposi-
tion and incorporates a deflation scheme that gener-
ates a sequence of blocks, each contributing success-
ively less to the regression performance. Importantly,
these blocks can possess varying MTR ranks, and
their parameters are optimized automatically and on
a block-by-block basis using automatic component
extraction (ACE). Notably, BTTR has demonstrated
performance comparable to that ofHOPLS, while sig-
nificantly reducing training time.However, it is worth
noting that, unlike HOPLS, BTTR is limited to pre-
dicting scalar variables. The aforementioned limita-
tion becomes evident when decoding complex fin-
ger movements, which occur during actions such as
grasping. A potential solution for avoiding this limit-
ation is to employ an individual BTTRmodel for each
finger. However, this approach imposes constraints
on the utilization of shared information among the
fingers. Moreover, in situations where multiple fin-
gers are engaged in simultaneous flexion, the recor-
ded signals demonstrate temporal overlap and spa-
tial sparsity, as discussed in [13]. This presents a
difficulty because exclusively training on individual
finger movements might be inadequate for decod-
ing the complexity of coordinated or multiple finger
movements.

Faes et al recently proposed an extension of
BTTR called eBTTR (extended BTTR) [19] to enable
the prediction of coordinated finger flexions thereby
also capturing finger co-activations, i.e. unintentional
movements of other fingers. These co-activations are
likely not encoded by the ECoG signal, but decoded
by the eBTTR model as it is trained to replicate fin-
ger movements recorded with a data glove. However,
as the recursive Tucker decomposition unfolds, some
single-finger accuracies continue to improve but at
the expense of other fingers, even to the extent that
their accuracy becomes outperformed by that of
(single-finger) BTTR. In order to remedy this diver-
gence, graph-optimized BTTR (Go-BTTR) is pro-
posed in which causal graph process (CGP)modeling
[20] is applied prior to regression to determine which
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fingers should be jointly regressed and which ones
not. As a case study, we consider finger trajectory pre-
dictionwhen expressing 4 letters of the American sign
language alphabet using an existing ECoG dataset
[21], and when expressing all letters of the Flemish
sign language alphabet using a newly recorded ECoG
dataset. As the latter has never been attempted before,
it could shed light on the feasibility of sign language
as a BCI-based communication paradigm.

2. Materials andmethods

2.1. Datasets and tasks
Our study utilized two distinct datasets. The first
dataset had been previously employed for classify-
ing four gestures taken from the American sign lan-
guage alphabet, whereby the initial study received
approval from the Medical Ethical Committee of
the Utrecht University Medical Center [21]. In our
current research, this dataset serves as the basis for
regressing finger movement trajectories associated
with these gestures. This dataset encompasses five
patients (with age ranging from 19 to 45 with mean
31, as detailed in table 1). These individuals were dia-
gnosed with intractable epilepsy and underwent the
implantation of subdural ECoG grids to aid in local-
izing their epileptogenic zones. The implanted grids
consisted of both standard clinical and high-density
ECoG grids. The standard grids featured electrodes
positioned at a 1 cm center-to-center inter-electrode
distance with a 2.3mm electrode diameter, sourced
from AdTech, Racine, USA. The high-density grids
were equipped with either 32 or 64 channels, utiliz-
ing a 1.3mm electrode diameter and a 3mm center-
to-center inter-electrode distance, also sourced from
AdTech, Racine, USA. The 32-channel grid covered
an area of 2.5 cm2 with a 4× 8 electrode layout, while
the 64-channel grid encompassed an area of 5.2 cm2

with an 8× 8 electrode layout. Notably, subject 1 was
excluded from further analysis since there were no
electrodes covering the M1 brain area.

The task, as detailed in [11], required participants
to perform four distinct hand gestures. In this study,
these gestures were derived from the American sign
language alphabet, as shown in figure 1. Specifically,
participants were instructed to replicate the displayed
gesture and maintain it for a duration of 6 s. Each
of the trials included intervals of rest lasting 6 s.
During these rest periods, participants were instruc-
ted to maintain an open hand position. Each experi-
mental run consisted of 40 gesture trials (with each
gesture repeated ten times in random order) and
41 rest trials. Participant 5 underwent the experi-
ment twice. All participants’ gestures were recorded
using a data glove from 5DT Inc. (Irvine, USA). Any

incongruent or erroneous trials, such as incorrect ges-
tures, extra finger movements, or gesture corrections,
were excluded from subsequent analysis.

The second dataset originates from two patients
with refractory neuropathic facial pain with epidural
ECoG grids placed as part of their pain treatment
(neuromodulation, motor cortex stimulation). The
experiment involving this dataset received approval
from the Ethics Committee Research UZ/KU Leuven
(EC Research). The first patient was implanted with
epidural ECoG grids on the right hand-knob area and
the second patient was implanted with an epidural
ECoG grid on the left subcentral gyrus and broca area
and the right hand-knob area (see table 2).

Two tasks were performed (subject 2 only per-
formed Task 2). The first task concerns single-finger
movements. The first subject was given a cue to move
a specific single finger whose trajectory was gauged
with a data glove (5DT Inc. Irvine, USA). In total, 150
trials were executed in a singular session lasting 600 s
with 30 trials for each finger. On average, subjects
were tasked to flex the cued finger once for 1 to 2 s,
after which was a rest period lasting 2 s. In the second
task, the two subjects were cued to replicate one of the
26 letters of the Flemish sign language alphabet (see
figure 1), presented in randomized order, with the
finger trajectories gauged with the data glove. Since
the experiment took place in Flanders (Belgium), the
Flemish sign language alphabet was used.

2.2. Go-BTTR
2.2.1. Overview
Since BTTR can only predict themovement of a single
finger, multiple finger models should be used in the
case of a subject’s hand, while eBTTR can predict
their joint movement. This is visualized in figure 2.
In order to decode complex gestures from multi-
way ECoG data in a stable manner, as eBTTR can
exhibit unstable single-finger accuracies as the Tucker
decomposition unfolds [19] (see also the Results
section), we use a CGP [20]. First, CGP is applied to
determine which fingers should be kept separate in
the regression and which ones joined, as illustrated
in the first iteration step of figure 3. In the first iter-
ation, CGP finds that 2 fingers are connected (cf the
bidirectional arrow) and that the remaining ones are
unconnected. Then, single BTTR blocks are used for
the prediction of the trajectories of the unconnec-
ted fingers individually and a single eBTTR block for
the prediction of the trajectories of the two connec-
ted fingers. In this way, Go-BTTR provides a middle
ground between both regression methods. In the case
of figure 3, the first iteration step inGo-BTTR has one
eBTTR and three BTTR blocks. There are two spe-
cial cases of Go-BTTR, depending on the outcome of
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Table 1. Patient information Utrecht dataset (adapted from [21]).

Patient Subject 2 Subject 3 Subject 4 Subject 5

Age 42 19 19 45
Gender Male Female Male Female
Handedness Right Right Right Left
Implanted
hemisphere

Left Left Left Right

Epileptic resected
area

Temporal lobe
(including amygdala and
hippocampus)

Posterior medial frontal
gyrus until pre-central
gyrus

Anterior temporal lobe
(including amygdala and
hippocampus)

Frontal-para-sagittal

High-density grid
location

Hand knob (pre-central
and superior
post-central)

Hand knob (pre- and
post-central)

Hand knob (superior
pre-central)

Hand knob (primarily
post-central)

Total number of
included
electrodes

24/32 32/32 31/32 59/64

Number of
electrodes over
M1

15 16 31 11

Number of
electrodes over S1

9 16 — 48

Table 2. Patient information Leuven dataset.

Patient Subject 1 Subject 2

Age 58 41
Gender Female Female
Handedness Right Right
Region of pain Trigeminus neuralgia (left) Temporomandibular joint disorder,

bilateral pain mostly in jaws.
Number of grids 1 2
Type of grid Medtronic Inc Specify® SureScan®

MRI 5-6-5 grid (in-line spacing
4.5 mm, row spacing 1.0 mm,
electrode size 4 mm)

2X Medtronic Inc Specify® SureScan®

MRI 5-6-5 grid, in-line spacing 4.5 mm,
row spacing 1.0 mm, electrode size 4 mm

Implanted hemisphere Right Left and right
ECoG Grid location Medial frontoparietal, covering M1

and S1, face and lip area
Left: Lateral frontoparietal, inferior
parietal cortex and Broca (Brodmann
area 44, inferior frontal gyrus pars
opercularis left), Right: Medial
frontoparietal, covering M1, S1 hand
knob & PMDc

Total number of included electrodes 16 32
Number of electrodes over M1 3 Left: 2, Right: 3
Number of electrodes over S1 4 Left: 5, Right: 4

CGP. If none of the fingers are connected according to
CGP, then each iteration step will consist of 5 BTTR
blocks andGo-BTTRwill evolve into a series of BTTR
models as seen in figure 2, top panel. On the other
hand, if all fingers are connected, and remain con-
nected throughout subsequent iteration steps, then
each iteration stepwill consist of a single eBTTRblock
and Go-BTTR will run exactly like eBTTR as seen in
figure 2, bottom panel. Note that in the first iteration
step of figure 3, the connection between the 2 fingers
was labeled as bidirectional, but this is not always the

case: if the connection is one-directional (e.g. matrix
Y1 causes matrix Y2), then eBTTR would run on
both fingers to produce a model for Y2, and regular
BTTR would only use Y1. The overarching procedure
is called graph-optimized block term tensor regres-
sion (Go-BTTR).

2.2.2. Go-BTTR: regression model
The proposed regression model is based on the
BTD with automatic MTR determination, denoted
as (Lk1, . . .,L

k
N). This model employs a deflation-based
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Figure 1. Flemish sign language alphabet [22] used in the Leuven experiment. Note that the ‘D’, ‘F’, ‘V’ and ‘Y’ signs of the
American sign language alphabet, used in the Utrecht experiment, are identical to the corresponding Flemish signs.

Figure 2. Scheme of BTTR (top panel) and eBTTR algorithm (bottom panel) with 2nd-order response variable Y.

approach to sequentially Tucker-decompose an ECoG
tensor and a FingerMovementmatrix into a sequence
of blocks. Through the technique of ACE, each block
comprises representations maximally correlated.

2.2.3. Go-BTTR: CGP model
The CGP has been developed to model and analyze
unstructured data by applying signal processing tech-
niques to graphs [20]. It provides a framework for
inferring cause-effect relationships between the nodes
of a graph, which we exploit here to detect which fin-
gers should be joined in the next regression step.

The graph signal at time sample k is represented
as follows:

x [k] =
[
x0 [k] x1 [k] · · · xN−1 [k] ,

]T ∈ CN (1)

withN the total number of nodes,K the total number
of time samples, xn[k], a discrete time series of a node
in a graph.

CGP is considered to be a discrete time series x[k]
on a graph of the following form [20]:

x [k] = w [k] +
M∑
i=1

Pi (A, c)
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Figure 3. Scheme of Go-BTTR algorithm with 2nd-order response variable Y. Two iterations are shown, each one consisting of a
CGP and a Go-BTTR step. See text.

x [k− i] = w [k] +
M∑
i=1

[∑i
j=0 cijA

j
]
x [k− i]

×w [k] + (c10I+ c11A)x [k− 1]

+
(
c20I+ c21A+ c22A

2
)
x [k− 2] + . . .

+
(
cM0I+ . . .+ cMMA

M
)
x [k−M]

where Pi(A, c) is a matrix polynomial in A, w[k] stat-
istical noise, cij a scalar polynomial coefficient, and

c=
[
c10 c11 · · · cij · · · cMM

]T
(2)

a vector collecting all the cij’s.
The CGP is a time series modeling technique

rooted in autoregressive (Markov) processes. In this
approach, the coefficients Pi(A, c) are interpreted as
graph filters. This constraint implies that the current
value x[k] at time step k cannot be influenced by net-
work effects beyond the ith order, looking back i time
steps. Additionally, this order is bounded by the min-
imum polynomial of the matrix A. [20].

The CGP model captures the finger interac-
tions during a specific block which ensures that
BTTR can focus on said interaction. Considering that
BTTR constructs blocks with maximally correlated
representations and the next block works with the
remainder, the captured finger interactions will not
be present in subsequent blocks.

2.3. Preprocessing
Notch filters, centered at 50 (as well as the second har-
monic, 100) Hz, were used to eliminate power line
noise. Afterwards, the data was visually examined to
remove bad channels. A channel is considered bad

if it exhibits an unstable signal (or unchanging sig-
nal). Subsequently, re-referencing with the applica-
tion of common average reference (CAR) as described
in [23]. At the end, a 4th-order tensor is constructed
using the following approach:

• Samples follows the size of vector Y (which is
recorded from the data glove).

• Channels are the amount of electrodes remaining
after the removal of bad channels.

• Frequencies corresponds to 16 components, con-
sisting of 15 gamma band amplitudes and the LMP.
The gamma band amplitudes were extracted in
the 60 to 130Hz range (high-frequency bands)
using 10 Hz frequency bands with a 5Hz over-
lap. These were obtained using bidirectional third-
order Butterworth band-pass filters [24]. The LMP
was determined by extracting the power in the 0.1
to 1.5Hz range.

• Time consists of 10 time instances derived from the
most recent 1 s epoch, achieved by downsampling
each of the eight band-pass filtered ECoG signals to
10Hz.

The preprocessing occurs in the following manner:

• Normalize (z-score) data glove data independently
for each finger Y ∈ RSamples×Fingers

• For each channel, epoch selection is applied. For
each sample, the previous second is used for band-
pass filtering and then downsampled to 10Hz, giv-
ing us the frequency and time dimensions for each
sample and channel.
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Figure 4. Raw recording of a single electrode for the activity of the index finger of subject 2 (Utrecht dataset) along with LMP, low
and high gamma amplitude and the predicted trajectory (using Go-BTTR). Y-axis is in arbitrary units, X-axis in ms. Color of the
curves as indicated in the insert.

• Normalize (z-score) tensor according to channel
and frequency bands of the training set. The para-
meters for the z-scoring are used for the test set as
well.

• Finally, the channel matrices are merged into a 4D
tensor with dimensions of samples by channels by
frequencies by time.

2.4. Evaluationmetrics
The optimal number of blocks, denoted as K, for the
Go-BTTR regression model, was determined by util-
izing a five-fold cross-validation approach and a sep-
arate test set to determine model performance. Each
dataset was split into a training, validation and testing
set with a ratio of 60%, 20% and 20%, respectively.
The training set was used to train themodel, the valid-
ation set to determine the optimal number of blocks,
and the test set to evaluate the model. Overfitting was
avoided by using the validation set to determine the
optimal number of blocks.

The evaluation of model performance relies on a
correlation metric between the glove-recorded data
and the predicted finger trajectories, in this case,
Pearson correlation. The test dataset was partitioned
into five non-overlapping blocks. For assessing the
significance of differences in average accuracies across
various fingers and subjects, we employed the signi-
ficance was established using the Wilcoxon signed-
rank test (two-tailed) based on a p-value, to indicate a

difference in average accuracies across various fingers
and subjects. A threshold of 0.05 was used. [25].

3. Results

3.1. Utrecht dataset
Figure 4 illustrates the relationship between the raw
recordings, the ground truth (data glove), the fea-
tures extracted from the ECoG data (frequency fea-
tures, LMP, time features) and the predicted traject-
ory. figure 5 shows the connectivity matrix resulting
fromCGP in the first iteration step for Subject 2 of the
Utrecht Data. We observe a substantial degree of self-
connectivity, as expected, however we can see that the
thumb, ring finger and pinky (labeled as 0, 1 and 4,
respectively) exhibit a connection with other fingers.
Since CGP rates connections on a continuous scale, a
threshold has to be used. Experimentally, a threshold
of 0.08 was used since in that case CGP reconstructs
the original signal with at least 95% accuracy.

The results (as well as their standard deviations)
are listed in table 3 for subjects 2, 3, 4 and 5, respect-
ively. A box plot representation is shown in figure 6.
Note that, as said above, data from subject 1 was not
used as M1 was not covered.

Figure 7 graphs the Pearson correlation coeffi-
cient (y-axis), across all 4 gestures, as compared to
the number of blocks (x-axis) used for each finger
of subject 2 when using Go-BTTR. We see that the

7



J. Neural Eng. 22 (2025) 026065 A Faes et al

Figure 5. Connectivity of Subject 1 in the first iteration step (Utrecht dataset, 4 letters of the American sign language alphabet).
The x-axis represents the 5 fingers and the y-axis the connected ones connected according to CGP in the first iteration step. The
numbers 0 to 4 correspond to the Thumb, Index, Middle, Ring and Pinky.). The color intensity represents the strength of the
connection in terms of Pearson correlation..

Table 3. Pearson correlation coefficients of cued finger gesture trajectories for Subjects 2, 3, 4, and 5 (Utrecht dataset, 4 letters of the
American sign language alphabet). The average correlation across all fingers for all subjects was 0.73 for Go-BTTR, 0.719 for eBTTR and
0.70 for BTTR.

Methods Fingers Subject 2 Subject 3 Subject 4 Subject 5

Go-BTTR Thumb 0.61± .06 0.51± .06 0.61± .06 0.61± .06
Index 0.87± .09 0.57± .09 0.87± .09 0.87± .09
Middle 0.85± .02 0.55± .02 0.85± .02 0.85± .02
Ring 0.80± .04 0.70± .04 0.80± .04 0.80± .04
Pinky 0.82± .02 0.42± .02 0.82± .02 0.82± .02

eBTTR Thumb 0.62± .05 0.52± .03 0.62± .05 0.62± .05
Index 0.87± .07 0.56± .05 0.87± .07 0.87± .07
Middle 0.81± .04 0.51± .02 0.81± .04 0.81± .04
Ring 0.80± .02 0.70± .02 0.80± .02 0.80± .02
Pinky 0.80± .01 0.39± .01 0.80± .01 0.80± .01

BTTR Thumb 0.58± .05 0.48± .05 0.58± .05 0.58± .05
Index 0.85± .08 0.45± .08 0.85± .08 0.85± .08
Middle 0.84± .04 0.54± .03 0.84± .04 0.84± .04
Ring 0.79± .02 0.69± .02 0.79± .02 0.79± .02
Pinky 0.72± .01 0.41± .02 0.72± .01 0.72± .01

Figure 6. Pearson correlation coefficients of cued finger gesture trajectories for Subjects 2, 3, 4, and 5 (Utrecht dataset, 4 letters of
the American sign language alphabet) in a box plot representation.
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Figure 7. Pearson correlation coefficient, across all 4 gestures, compared to the number of blocks for each finger for subject 2
(Utrecht dataset). Finger color code as indicated in the insert.

Figure 8. Pearson correlation coefficient (y-axis), across all gestures, of BTTR, eBTTR, and Go-BTTR compared to the number of
blocks (x-axis) for the index finger of subject 2 (Utrecht dataset). Model color code as indicated in the insert. Note that the same
eBTTR and Go-BTTR model is also used for the other fingers, while there are 5 separate models of BTTR (one for each finger).

accuracy generally increases as more blocks are used
to eventually decrease slightly, as seen e.g. for the ring
finger.

Figure 8 shows the Pearson correlation coefficient
as compared to the number of blocks used for the
index finger of subject 3 when using BTTR, eBTTR,
and Go-BTTR. Both BTTR and Go-BTTR remain

relatively stable as the number of blocks increases
whereas eBTTR is less stable as it exhibits more signi-
ficant lapses in performance. The likely cause is that,
from a certain number of block onwards, various fin-
gers within eBTTR become independent.

Figure 9 shows a still image of a hand avatar
performing the movements predicted by Go-BTTR.

9
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Figure 9. Cued (left panels) and decoded gestures (right panels) of subject 3, Utrecht dataset.

We observe that the predicted movement is visually
rECOGnizable as the intended gesture. On the other
hand, figure 10 shows the finger flexions for the Y ges-
ture of the ground truth (data glove) and Go-BTTR
prediction for all fingers of subject 2. We observe
that the predicted finger flexions are in line with the
ground truth.

3.2. Leuven dataset
The results for Task 1 are listed in table 4 for subject 1.
We observe that Go-BTTR significantly outperforms
eBTTR for the index andmiddle fingers andBTTR for
the ring finger, and is on par with the best finger per-
formances. Similar to theUtrecht data set, there is also
the issue of stability of the deflation process. Figure 11
shows that, for the index finger of subject 1, Go-BTTR
remains as stable as BTTRwhen the number of blocks
increases whereas eBTTR is less stable and develops a
significant decrease in performance. The likely cause

is that, beyond a certain number of blocks, the various
targets within eBTTR become independent.

Task 2 considers all gestures of the sign language
alphabet, thus going beyond the selection of 4 ges-
tures as in the Utrecht experiment. The results, rep-
resented in the form of Pearson correlation coeffi-
cients, are given in table 5 for subjects 1 and 2, respect-
ively. A box plot representation is shown in figure 12.

For subject 1 we observe for the middle finger
and pinky a statistically significant lower perform-
ance for eBTTR compared to Go-BTTR. On the other
hand, for subject 2, the index finger, ring finger and
pinky exhibit statistically significantly lower perform-
ance for BTTR compared to Go-BTTR. This shows
that, depending on subject and finger, either BTTR
or eBTTR perform better, but that Go-BTTR, due to
its connectivity model, manages to consistently yield
the best performance.

The decoders applied to the Leuven dataset
exhibit significantly lower correlation coefficients

10
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Figure 10. Finger flexions, for the Y gesture, of the ground truth (data glove) and Go-BTTR prediction for all fingers of subject 2
(Utrecht dataset). Y-axis is in arbitrary units, x-axis in ms. Color code as indicated in the insert.

Table 4. Pearson correlation coefficients of cued single-finger movement trajectories of Subject 1 (Task 1, Leuven dataset). Significantly
different results compared Go-BTTR are indicated in bold.

Methods Thumb Index Middle Ring Pinky

Go-BTTR 0.32± .06 0.55± .09 0.48± .02 0.23± .04 0.18± .02
eBTTR 0.31± .05 0.45± .07 0.12± .04 0.23± .02 0.16± .01
BTTR 0.32± .05 0.55± .08 0.47± .04 0.17± .02 0.17± .01

Figure 11. Pearson correlation coefficient (y-axis) compared to the number of blocks (x-axis) for the index finger for subject 1
(Task 1, single-finger trajectories, Leuven data set). Note that the performance of Go-BTTR coincides with that of BTTR. This is
because Go-BTTR detects that only finger is moving, defaulting Go-BTTR to BTTR. .

11
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Table 5. Pearson correlation coefficients of cued finger gesture trajectories for Subject 1 and Subject 2 (Task 2, 26 letters of the Flemish
sign alphabet, Leuven dataset). Bold values indicate significantly different results compared to Go-BTTR. The average correlation across
all fingers for all subjects was 0.37 for Go-BTTR, 0.34 for eBTTR and 0.33 for BTTR.

Methods Fingers Subject 1 Subject 2

Go-BTTR Thumb 0.42± .06 0.32± .06
Index 0.36± .09 0.46± .09
Middle 0.48± .02 0.55± .02
Ring 0.23± .04 0.32± .04
Pinky 0.18± .02 0.33± .02

eBTTR Thumb 0.42± .05 0.32± .05
Index 0.32± .07 0.46± .07
Middle 0.38± .04 0.49± .04
Ring 0.23± .02 0.32± .02
Pinky 0.12± .01 0.33± .01

BTTR Thumb 0.38± .05 0.28± .05
Index 0.36± .08 0.41± .08
Middle 0.47± .04 0.55± .04
Ring 0.23± .02 0.23± .02
Pinky 0.17± .01 0.24± .01

Figure 12. Pearson correlation coefficients of cued finger gesture trajectories for Subject 1 and Subject 2 (Task 2, 26 letters of the
Flemish sign alphabet, Leuven dataset) in a box plot representation.

compared to the Utrecht dataset. This is because the
Leuven dataset was recorded with epidural electrodes
whereas the Utrecht dataset with subdural electrodes.
Epidural recordings exhibit lower signal amplitudes
than their subdural counterpart, particularly when
using high-density grids, and this can lead to lower
finger trajectory correlations ([26]). However, as with
Go-BTTR finger the correlation coefficients converge
consistently for both datasets, as shown in figures 6
and 8, we can conclude that the proposed method is
robust to the quality of the data.

Figure 13 shows the finger flexions for the Y ges-
ture of the ground truth and Go-BTTR prediction for
all fingers of subject 2. We observe that the predicted
finger flexions are in line with the ground truth des-
pite the lower correlation coefficients.

3.3. Computational complexity
Because of CGP, Go-BTTR is computationally more
expensive than BTTR or eBTTR. However, Go-
BTTR assumes that finger connectivity either remains

constant or decreases with increasing number of
blocks. In the worst case, finger connectivity remains
constant, andCGP needs to run on the connected fin-
gers every block. In the best case, as fingers become
more independent, a smaller number of finger config-
uration need to be exploited, thereby saving on CGP
computations.

On a Macbook Pro M1 2020 with 16GB of RAM,
the training time forGo-BTTRwas 28minutes for the
Utrecht dataset and 34minutes for the Leuven dataset
(Task 1, single-finger flexion). The training time for
BTTR was 13 minutes for the Utrecht dataset and 16
minutes for the Leuven dataset. The training time for
eBTTR was 18 minutes for the Utrecht dataset and 22
minutes for the Leuven dataset.

4. Conclusion

With tensor-based decoders, multiway structured
data can be better exploited than by relying on
data unfolding [27]. Decoding joint fingermovement
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Figure 13. Finger flexions for the Y gesture of the ground truth and Go-BTTR prediction for all fingers of subject 2 (Task 2, 26
letters of the Flemish sign alphabet, Leuven dataset). Y-axis is in arbitrary units, x-axis in ms. Color code as indicated in the insert.

trajectories and particularly sign language gestures
from ECoG recordings is a challenging task but
needed when envisaging dexterity in BCI-based
applications. However, for hand prosthetic- or exo-
skeleton settings during realistic object handling,
decoding of complex finger movement trajectories
is necessary. To solve this, we proposed a novel
approach that extends the block term tensor regres-
sion approach developed before by introducing CGP
to account for fingers that become connected when
performing coordinatedmovements. In this way, Go-
BTTR serves as an optimal middle ground giving
the best of both BTTR and its extension, eBTTR.
Thereby preserving the coordinated finger perform-
ance of eBTTR, while retaining the single-finger sta-
bility of BTTR.
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