
J. Neural Eng. 19 (2022) 066011 https://doi.org/10.1088/1741-2552/ac9a75

Journal of Neural Engineering

RECEIVED

6 July 2022

REVISED

28 September 2022

ACCEPTED FOR PUBLICATION

14 October 2022

PUBLISHED

14 November 2022

PAPER

Finger movement and coactivation predicted from intracranial
brain activity using extended block-term tensor regression
A Faes∗ and MM Van Hulle
Department of Neurosciences, Laboratory for Neuro- & Psychophysiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
∗ Author to whom any correspondence should be addressed.

E-mail: axel.faes@kuleuven.be

Keywords: tensor decomposition, partial least squares, multiway data, tensor, electrocorticography, finger movement decoding,
brain computer interfaces

Supplementary material for this article is available online

Abstract
Objective.We introduce extended Block-Term Tensor Regression (eBTTR), a novel regression
method designed to account for the multilinear nature of human intracranial finger movement
recordings. Approach. The proposed method relies on recursive Tucker decomposition combined
with automatic component extraction.Main results. eBTTR outperforms state-of-the-art
regression approaches, including multilinear and deep learning ones, in accurately predicting
finger trajectories as well as unintentional finger coactivations. Significance. eBTTR rivals
state-of-the-art approaches while being less computationally expensive which is an advantage when
intracranial electrodes are implanted acutely, as part of the patient’s presurgical workup, limiting
time for decoder development and testing.

1. Introduction

Every year, up to half a million patients world-
wide face paralysis due to spinal cord injury, brain-
stem stroke and amyotrophic lateral sclerosis (ALS)
[1]. Brain computer interfaces (BCIs) are capable of
bypassing disconnected neural pathways to replace
the function of a lost or impaired body part, which
led them to becoming promoted as a solution for
these patients. Typically, BCI systems consist of sev-
eral components: from the recorded brain activity,
signal features are extracted and the result translated
(‘decoded’) into commands controlling an external
device such as a robotic arm or hand. Extraordinary
results have been achieved with BCI controlling func-
tional electrical stimulation of hand muscles [2, 3]
and prosthetic hands and arms, exoskeletons or other
effectors [4–7].

Motor BCI researchers are increasingly paying
attention to electrocorticography (ECoG) where elec-
trodes are placed directly above the cortex (i.e.
sub- or epidurally) thereby avoiding tissue dam-
age and histological processes wire microelectrode
implants are prone to. ECoG signals yield signific-
antly higher amplitudes compared to scalp EEG, are

not contaminated by artifacts, enjoy a broader band-
width and higher spatial resolution [8, 9], as well as
long-term signal stability [10, 11].

Ramsey and co-workers at UMC Utrecht [12]
reported success on the real-time, long-term use of
an ECoG-based motor BCI in a patient with late-
stage ALS. The patient imagined closing the right
hand to select a cued target (i.e. a displayed char-
acter), while the decoder was detecting changes in
the ECoG spectrum. Benabid et al [13] reported a
major breakthrough with a tetraplegic patient con-
trolling a four-limb exoskeleton with up to 8 degrees
of freedom (start/stop walking, arm trajectory, arm-
and wrist rotations). Despite this success, Benabid
et al admitted that higher resolution ECoG elec-
trode grids and further algorithmic developments are
required to achieve better skilled movements of the
joints and in particular of the hand (such as pre-
hension and faster movements of the fingers). When
looking beyond movement/no-movement classific-
ation, decoding finger movement trajectories from
ECoGs remains an unsolved problem, even though a
few attempts have been made. For example, Kubanek
et al [14] were the first to continuously decode per-
formed flexions/extensions of individual fingers by
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analyzing local motor potentials (LMP) and spec-
tral amplitudes in five frequency bands. The authors
used a conventional sparse linear regression model
and obtained an average decoding performance of
r = 0.52 (predicted vs. expected correlation). Since
then, continuous fingermovement decoding has been
studied based on Gaussian [15], linear regression
[16, 17], convolutional neural networks (CNNs), ran-
dom forests (RFs) and deep learning networks (pro-
posed in [18]). However, finger trajectory decoding
could benefit from recent developments in multilin-
ear algebra (multiway decoding) as ECoG is in essence
structured in space, time, and frequency domains.
This structure is largely ignored in traditional vector-
or matrix-based regressionmodels, as the data is con-
catenated into vectors and matrices (aka unfolding).
Multiway models preserve the multilinear structure
of the data and support the discovery of potentially
hidden multilinear components [19]. The two most
popular multiway frameworks are Tucker (TKD) and
CANDECOMP/PARAFAC (or CPD) decompositions
(see [19, 20] for review) and both aim to determine
the low-dimensional space where important inform-
ation is residing.

De Lathauwer introduced a tensor decomposi-
tion algorithm, called Block Term Decomposition
(BTD) [21–23], which can be seen as a unified ver-
sion of TKD and CPD. More specifically, in [23]
two BTDmodels were proposed to approximateNth-
order tensor data as a sum of K-blocks called rank-
(Lk1, . . . ,L

k
N) BTD and rank-(L1, . . . ,LN) BTD with

k= 1, . . . ,K. In the former model, blocks can have
different multilinear rank (MTR), where in the latter
a unique MTR is chosen for all blocks. If there is only
one block, then BTD reduces to TKD. In contrast, if
all blocks have multilinear rank MTR = (1,1, . . . ,1),
then it reduces to CPD. This approach provides great
flexibility and opens new possibilities for multiway
data analysis, above all when rank-(Lk1, . . . ,L

k
N) BTD

is adopted. For instance, an EEG study [24] showed
that, while CPD failed to model epileptic seizures,
rank-(L1, . . . ,LN) BTD correctly extracted the ictal
sources that matched clinical assessment.

The abovementioned multiway approaches have
been adapted for regression analysis tomodel the rela-
tionship between arm trajectory and ECoG signals
recorded frommonkeys [25, 26] and recently between
exoskeleton-based arm trajectory, arm- and wrist
rotations and ECoG signals recorded from the tet-
raplegic patient mentioned above [13]. The decoder
in the latter case relies on a variant of multiway
partial least squares regression (NPLS), but is not
capable of achieving the kind of accuracy needed
to decode fine limb movements. Possible reasons
for this underperformance are the limited fitness
ability, the high computational complexity and the
slow convergence of NPLS when handling higher-
order data [25]. On the other hand, Zhao et al [25]

developed a powerful generalized framework, called
Higher-Order Partial Least Squares (HOPLS), based
on (1,L2, . . . ,LN)-rank BTD (i.e. all blocks have the
same MTR), that provides enhanced predictability
with optimal balance between fitness andmodel com-
plexity. As a result, HOPLS was able to outperform
conventional PLS.

Camarrone and co-workers recently introduced
Block-Term Tensor Regression (BTTR) [27, 28] and
showed it performed with similar accuracy as HOPLS
while being much faster to train. However, unlike
BTTR, HOPLS generalises to predict a tensor (mul-
tiway array) Y from a tensor X by projecting the data
onto latent space and performing regression on the
corresponding latent variables. We introduce a sim-
ilar generalization but for Block-Term Tensor Regres-
sion, further called eBTTR, while retaining its com-
putational advantage over HOPLS and apply it to
accurately decode finger movements, even uninten-
ded ones due to limited finger independence, further
referred to as finger coactivation.

2. Materials andmethods

One of the main limitations of BTTR is that it
can predict a scalar variable only. This becomes
an issue when modeling coordinated finger move-
ments as it in the case of grasping a cup. One evid-
ent solution is to have a BTTR model per finger.
However, this limits exploiting information shared
between fingers. More fundamentally, unlike indi-
vidual fingers being represented at separate anatom-
ical locations [29], when flexing multiple fingers sim-
ultaneously, the same locations now exhibit spatially
sparse and even mixed signals [30]. This implies
that decoders trained on individual finger move-
ments could become inadequate when representing
coordinated finger movements.

To tackle this, we extend BTTR into eBTTR
to model multiple variables simultaneously. As an
example case we consider intended single finger
movement in the presence of unintended coactivation
of the other fingers. An overview of the mathematical
notation used can be found in table 1.

Conceptually, the (e)BTTR algorithm consists of
the following operations. First, the data is cast into
tensor format, X, with the corresponding ‘labels’ into
matrix format,Y. (e)BTTR proceeds iteratively, yield-
ing a series of blocks with declining contribution to
the regression performance: at each iteration, amode-
1 cross-covariance tensor C is constructed by com-
bining information from both X and Y. This cross-
covariance tensor C is then decomposed and ACE
(Automatic Parameter Extraction) used for automatic
parameter estimation of the blocks. The resulting
decomposition can be used to reconstruct X and
Y and thus comprise the learned regression model
(from this iteration). X and Y get deflated before the
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Table 1.Mathematical notation.

Notation Description

T,M,v,S Tensor, matrix, vector, scalar
(respectively)

MT Transpose of matrix
×n Mode-n product between tensor

and matrix
⊗ Kronecker product
◦ Outer product
|·F| Frobenius norm
T(n) Mode-n unfolding of tensor T
C(T) Core tensor associated to tensor T
M(n) Mode-n factor matrix
Mind (Sub-)matrix including the

column(s) indicated in ind
M\ind (Sub-)matrix excluding the

column(s) indicated in ind
[[C;M(1), . . . ,M(N)]] Full multilinear product

C×1M(1) ×2 · · · ×NM(N)

⟨T,E⟩{n,n} Mode-n cross-covariance tensor

next iteration starts. After training, the learnedmodel
can be used to predict Y using a Xtest.

Similar to HOPLS, BTTR and its multivariate
extension eBTTR rely on a partial least squares
approach (PLS). Due to this, their performance is
similar to that of HOPLS. Conceptually, the main
differences with HOPLS are: the decomposition of
the mode-1 cross-product between predictor- and
response variables, the blocks that can have differ-
ent multilinear ranks (MTRs), and the use of the
automatic component extraction (ACE) for para-
meter estimation. These differences cause (e)BTTR
to be faster to train than HOPLS, with comparable
accuracies.

2.1. Extended block-term tensor regression
(eBTTR)
The proposed extended Block-Term Regression
(eBTTR) model is based on (Lk1, . . . ,L

k
N) BTD with

automatic MTR determination. Specifically, it is a
deflation-based method that sequentially decom-
posesX andY into a series of blocks ofmaximally cor-
related representations extracted via ACE. A scheme
of eBTTR is shown in figure 1.

Given a set of training data Xtrain ∈ RI1×···×IN

and vectoral response Ytrain ∈ RI1×M, eBTTR training
consists of automatically identifying K blocks s.t.

Xtrain =
K∑

k=1

Gk ×1 tk ×2 P
(2)
k ×3 . . .×N P

(n)
k +Ek

Ytrain =
K∑

k=1

ukq
T
k + Fkwith uk = tkbk

with Gk ∈ R1×Rk
2×···×Rk

N the core tensor for the kth-

block, P(n)k the kth loading matrix for the n-mode,
uk and tk latent components, qk the loading mat-
rix, bk the regression coefficient, and Ek and Fk

Figure 1. Scheme of eBTTR algorithm with 3rd-order
predictor variable X and 2nd-order response variable Y.
Note that each block is computed using ACE. In this
work, X ∈ RSamples×Channels×Frequencies×Time and
Y ∈ RSamples×Fingers.

Figure 2. eBTTR.

residuals. Once the model is trained—and, hence,
Gk, P

(n)
k and bk are computed—the final predic-

tion is obtained as follows: Ytest = TZ= Xtest(1)WZ

where each column wk = (P(n)k ⊗ ·· ·⊗P(2)k )vec(Gk)
and each row zk = bkqk. This is summarized in
figure 2.

2.1.1. Automatic component extraction (ACE)
Given an N-way variable X ∈ RI1×···×IN and a vec-
torial variable Y ∈ RI1×M, we aim to automatically

extract the latent components t, q and P(n)
N
(n=2), asso-

ciated with the nth mode of X and maximally correl-
ated with Y, while |X− [[G; t,P(2), . . . ,P(N)]]|F is min-
imized.

Within ACE, we define the mode-1 cross-
product between predictor and response variables
as C= ⟨X,Y⟩(1) and its decomposition as C≈
[[G(c);q,P(2), . . . ,P(N)]]. We provide the model with
automatic SNR and τ selection based on Bayesian
Information Criterion (BIC) defined here as:

BIC(τ,SNR|SNR, τ∗)

= log

(
|C− [[G(c);q,P(2), . . . ,P(N)]]|F

s

)
+
log(s)

s
DF,

(1)
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Figure 3. ACE.

where G(c), q and {P(n)}Nn=2 are the sparse core, lat-
ent vector and factor matrices obtained with mPSTD
[28]—a modified version of the original sparse
Tucker decomposition (PSTD) [31]—using specific
τ and SNR values, s the number of entries in G, and
DF the degree of freedom calculated as the number
of non-zero elements inG(c), as suggested in [32]. For
each SNR value, the associated optimal τ is computed
as τ∗ = argminτBIC(τ,SNR). Then, the optimal SNR
is determined as SNR∗ = argminSNRBIC(SNR, τ

∗).
Once G(c), q and {P(n)}Nn=2 are computed, the score
vector t is first calculated as

t= (C×2 P
(2)T ×3 . . .×N P

(n)T)(1)vec(G
(c)),

and then normalized. This is summarized in figure 3.
The mPSTDmodel is first initialized with higher-

order orthogonal iteration (HOOI) [33]. Then, iter-
atively, a soft-thresholding rule based on parameterλ,
alternated with a threshold τ , are applied to enhance
model sparsity and to prune irrelevant compon-
ents, respectively. Note that in [31] SNR ∈ [1,50]
is used to derive, via a line search, the optimal degree
of sparsity λ of the core tensor (see [31]. At each
iteration, the core tensor G is updated using the
soft-thresholding rule as G= sgn(G)×max{|G| −
λ,0}, while the threshold τ ∈ [0,100] is used to reject
unnecessary components from the n-mode S(n) ={
r|100

(
1−

∑
iG(n)(r,i)∑
t,iG(n)(t,i)

)
⩾ τ
}
, P(n) = P(n)(:,S(n)),

q= q(S(n)) and G(n) = G(n)(S(n), :). The mPSTD is
summarized in figure 4.

2.2. Non-multilinear approaches
We will consider the BCI competition IV dataset (see
further) for comparing the performance of eBTTR

Figure 4.mPSTD.

with the winner of this competition, a linear regres-
sion model based on amplitude modulation (AM)
[17], as well as with more recent attempts based on
RFs, CNNs, and Long short-term memory network
(LSTM) (proposed and compared in [18]), all of
which are non-multilinear approaches.

Since in both [17, 18] only 1 test set was used to
assess performance, which factually impedes statistic-
ally testing the significance of any observed perform-
ance difference between the compared algorithms,
we have re-implemented AM, RF, LARS, CNN and
LSTM. We proceeded as follows.

For AM, we replicated the procedure described in
[17]. First, we filtered the ECoG signals in the sub-
gamma (1–60Hz), gamma (60–100Hz) and high-
gamma bands (100–200Hz). For each of these bands,
we determined the amplitude modulation and used
it to estimate their band-specific AM features. For
each finger and subject, we used forward feature selec-
tion using a wrapper approach to find the relevant
AM features. These features are then used in a lin-
ear regression model. Finally, we verified whether
the obtained performance compared with the one
reported in [17].

For LARS, we used the LassoLars function of the
most recent version of the scikit-learn package of
Python (version 0.24.2 released in April 2021; we
assume that Xie et al used version 0.19.1, but this was
not reported). LARS transforms the original signal
using ICA, decomposes it into different bands, calcu-
lates band powers and fits a LassoLars model. LassoL-
ars has one main parameter, α, the multiplier for the
penalty term whereby α= 0 corresponds to ordinary
least square linear regression. A line search was used
to optimize alpha.

For RF, a similar processing pipeline was used.
The RandomForestRegressor function of the scikit-
learn package was used (same version as above). RF
transforms the original signal using ICA, decomposes
it into different bands, calculates band powers and fits
the RandomForestRegressor model.
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The CNN and LSTM were built according to the
specifications and architecture given in [18]. CNN
refers to a linear regression model applied to features
prior extracted using a CNN. The CNN and LSTM
were build using PyTorch in Python (version 1.8.0
released inMarch 2021; note that Xie et al did not spe-
cify which version they used).

2.3. Dataset
We will compare eBTTR’s performance with that
of the aforementioned non-multilinear models, as
well as with multilinear models HOPLS and BTTR,
in predicting continuous finger flexions from ECoG
recordings.Wewill use hereto the publically-available
BCI Competition IV dataset 4 for reproducibility’s
sake. It comprises ECoG signals sampled at 1000Hz
from themotor cortex (hand-knob area) of three sub-
jects, as well as the time courses of the flexion of each
of five fingers of the contralateral hand (gaugedwith a
data glove). There are 150 trials (samples) in total (30
trials per finger) recorded in a single session (600 s).
Subjects flexed the cued finger 3–5 times for 2 s fol-
lowed by a rest period of 2 s. The first 400 and the
last 200 s of recording were used as training and test-
ing sets, respectively. The number of ECoG electrodes
(channels) was 62 for Subject 1, 48 for Subject 2, and
64 for Subject 3. More details about the data can be
found in [34].

The dataglove position measurement lags by
37ms (±3ms, SEM) the amplifier measurement.
However, this is of the same order of granularity as
the datagloves position measurement as it is sampled
at 25Hz, thus every 40ms. Hence, the dataglove pos-
ition measurement is shifted by 1 position in order
to account for the lag. This is also done in the
approaches against which we compare our (e)BTTR’s
performance.

The glove data and the ECoG signals were extrac-
ted starting 1 s prior to trial onset (‘epoch’). ECoG
recordings were prepared first by filtering out the
power line using notch filters centered at 50 and
100Hz, then, by removing bad channels (i.e. those
exhibiting unstable or unchanging signals, i.e. chan-
nels 55 in subject 1, channels 21 and 38 in subject 2,
and channel 50 in subject 3). The remaining channels
were re-referenced to a Common Average Reference
(CAR) [3]: the average of all signals is taken as refer-
ence and subtracted from all signals [35]. The ECoG
signals are transformed into 4th order ECoG tensor
X ∈ RSamples×Channels×Frequencies×Time as follows:

• Samples depends on the length of the data glove’s
trajectory vector Y.

• Channels corresponds to the number of curated
electrodes (thus, after removing bad ones), i.e. 61
for subject 1, 46 for subject 2, and 63 for subject 3.

• Frequencies corresponds to the 8 bidirectional
fourth-order Butterworth band-pass filters

[36] ECoG signals are subjected to extract
the corresponding spectral amplitudes in the
δ (1.5–5Hz), θ (5–8Hz), α (8–12Hz), β1

(12–24Hz), β2 (24–34Hz), γ1 (34–60Hz), γ2

(60–100Hz), γ3 (100–130Hz) bands.
• Time is composed of 10 instances or bins as for each
of the described 8 components, the most recent 1 s
epoch is downsampled to 10Hz.

The data glove data is normalized (z-scored)
independently for each finger, yielding a vector
Y ∈ RSamples×Fingers. Samples corresponds to the
sampled finger flexions over time. The Fingers
dimension corresponds to the five fingers, Thumb,
Index, Middle, Ring and Pinky.

As a result, for each channel c, a 3rd order ECoG
tensor Xc ∈ RSamples×Frequencies×Time is computed after
epoch selection, band-pass filtering and 10Hz down-
sampling. These steps are repeated for each time
sample s. The results are then merged into a mat-
rix Xc,f ∈ RSamples×Time (10 bins). This matrix is then
normalized (z-scored) to reduce the difference in
magnitude between frequency bands: xs,t = (xs,t −
µc,f)/δc,f where µc, f and δc, f are, respectively, the
mean and standard deviation computed for channel
c and frequency band f of the training set. Note that
the same values are used to normalize the test set.

Once all Xc,f ∈ RSamples×Time (10) are computed for
the various components (8), they are merged into
Xc ∈ RSamples×Frequencies (8)×Time (10).

Next, when all 3rd order ECoG tensors Xc ∈
RSamples×Frequencies (8 components)×Time (10 bins) are com-
puted for each channel c, they are merged into X ∈
RSamples×Channels {61, 46, 63}×Frequencies (8)×Time (10).

2.4. Parameter optimizationmultilinear models,
performance assessment
In order to optimize the model parameters from
the training data, K,R2, . . . ,RN for HOPLS and K
for BTTR and eBTTR, a five-fold cross-validation
approach was used.

Since the cited BCI Competition IV dataset 4
studies reported Pearson’s correlation coefficients
between data glove- and predicted intended finger
trajectories, we also applied it here. In support of the
statistical analysis, the test data was split in five non-
overlapping blocks. We used the two-tailed Wilcoxon
signed-rank test [37] to compare average accuracies
per finger and subject; they are considered signi-
ficantly different if the p-value is <0.05. The non-
intended finger movements (coactivations) are visu-
ally inspected from hand avatar movies.

3. Results

The Pearson correlation coefficients are reported for
the intended movements of each finger individually,
and averaged across all fingers except for finger 4
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Table 2. Intended (cued) finger movement accuracy for subject 1 (Pearson correlation, with significant differences to eBTTR in bold).

Methods Thumb Index Middle Ring Pinky Avg.

eBTTR 0.71± .04 0.75± .06 0.49± .06 0.69± .04 0.68± .01 0.66± .03
BTTR 0.72± .06 0.77± .09 0.38± .02 0.68± .04 0.67± .02 0.64± .05
HOPLS 0.70± .05 0.79± .08 0.36± .03 0.70± .06 0.65± .02 0.63± .04
AM 0.57± .03 0.69± .06 0.14± .02 0.52± .04 0.28± .01 0.42± .03
RF 0.58± .09 0.54± .05 0.07± .03 0.31± .05 0.33± .02 0.38± .05
LARS 0.11± .05 0.08± .03 0.10± .02 0.60± .05 0.39± .02 0.17± .03
CNN 0.67± .04 0.78± .04 0.11± .02 0.54± .03 0.45± .04 0.50± .04
LSTM 0.73± .03 0.79± .08 0.18± .02 0.61± .04 0.45± .04 0.54± .04

Table 3. Idem to table 2 but for subject 2.

Methods Thumb Index Middle Ring Pinky Avg.

eBTTR 0.63± .05 0.47± .08 0.33± .03 0.52± .02 0.47± .01 0.48± .05
BTTR 0.64± .05 0.46± .08 0.27± .04 0.50± .03 0.48± .01 0.46± .05
HOPLS 0.63± .04 0.47± .06 0.26± .05 0.51± .02 0.48± .01 0.44± .04
AM 0.52± .03 0.36± .06 0.23± .02 0.48± .04 0.33± .01 0.36± .03
RF 0.52± .05 0.36± .04 0.22± .03 0.39± .04 0.25± .02 0.34± .04
LARS 0.54± .05 0.41± .04 0.18± .02 0.44± .04 0.25± .02 0.35± .03
CNN 0.60± .04 0.40± .04 0.24± .02 0.44± .03 0.28± .04 0.38± .04
LSTM 0.62± .03 0.38± .08 0.27± .02 0.47± .04 0.30± .04 0.39± .04

Table 4. Idem to table 2 but for subject 3.

Methods Thumb Index Middle Ring Pinky Avg.

eBTTR 0.71± .05 0.57± .07 0.64± .04 0.62± .02 0.73± .01 0.66± .05
BTTR 0.73± .05 0.59± .08 0.64± .04 0.63± .02 0.72± .01 0.67± .05
HOPLS 0.74± .06 0.57± .09 0.65± .02 0.61± .04 0.68± .02 0.64± .04
AM 0.59± .03 0.51± .06 0.32± .02 0.53± .04 0.42± .01 0.46± .03
RF 0.67± .05 0.27± .04 0.16± .03 0.14± .04 0.36± .02 0.37± .04
LARS 0.72± .05 0.43± .04 0.45± .02 0.51± .04 0.64± .02 0.56± .03
CNN 0.74± .03 0.53± .05 0.45± .04 0.49± .03 0.68± .06 0.60± .05
LSTM 0.74± .02 0.55± .06 0.46± .04 0.41± .02 0.75± .06 0.62± .05

(ring) as flexing the latter is difficult to suppress when
the 3rd or 5th finger is flexing, as this was done by
the authors of the cited papers (note that we assess
coactivations qualitatively, see further). The aver-
age results and their standard deviations for the five
blocks of test data (see above) are listed in tables 2–4
(listed under Avg.) for subjects 1, 2 and 3, respectively.

A statistically significant difference between
BTTR and eBTTR was found for the middle fin-
ger of subject 1 and subject 2 and between eBTTR
and HOPLS for subjects 1 and 2, mainly due to the
difference in correlation coefficients of the middle
finger.

We also investigated the runtime needed to
estimate the model parameters. One of the main
advantages of BTTR is its speed. BTTR is trained sig-
nificantly faster than HOPLS (e.g. 3min against 14 h
for HOPLS). Note that HOPLS requires computa-
tionally expensive techniques such as cross-validation
to identify the optimal set of model parameters
(i.e. the number of scores and loadings). Since eBTTR

is based on BTTR, it enjoys the latter’s fast training
time (e.g. 5min against 3 min for BTTR).

Figure 5 shows stills of the hand avatar rep-
licating the predicted movements of a few mod-
els. Compared to BTTR and AM, we observe that
eBTTR and HOPLS better decode joint finger move-
ments, comprising intentional- (cued finger) and
unintentional ones (coactivations)1. The latter are in
part due to the subject’s hand- and forearm tendon
anatomy and the divergent connections from hand
cortical motor neurons to spinal motor neurons,
limiting cortical access to individual fingers [38].
Co-activations are therefore present in the data glove
data, but most likely not encoded by the ECoG sig-
nals. One could question whether these coactiva-
tions should be decoded at all. However, render-
ing them makes the outcome look more natural and

1 For a quantitative comparison in the case of eBTTR and BTTR,
we refer to the supplementary material section.
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Figure 5. Unintentional coactivation for subject 3 during middle finger movement.

could provide additional sensory information when
approaching a physical object.

4. Conclusion

Tensor-based decoders are able to exploit multiway
structured data better than those that rely on data
unfolding. Decoding joint finger movements is a
challenging task that needs to be addressed when
envisaging BCI-based hand prosthetic- or exoskel-
eton control in realistic object handling scenarios.
To tackle this, we proposed an extension of the
tensor decomposition approach we developed before
so that it can be used to regress over multiple fin-
gers simultaneously and showed that it can challenge
state-of-the-art multiway regression techniques while
outperforming more conventional ones.
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