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Single finger trajectory prediction from intracranial
brain activity using Block-Term Tensor Regression

with fast and automatic component extraction
Axel Faes*, Flavio Camarrone* and Marc M. Van Hulle, Fellow, IEEE

Abstract—Multiway- or tensor-based decoding techniques for
Brain Computer Interfaces (BCI) are believed to better account
for the multilinear structure of brain signals than conventional
vector- or matrix-based ones. However, despite their outlook on
significant performance gains, the used parameter optimization
approach is often too computationally demanding so that con-
ventional techniques are still preferred. We propose two novel
tensor factorizations which we integrate into our Block-Term
Tensor Regression (BTTR) algorithm and further introduce a
marginalization procedure that guarantees robust predictions
while reducing the risk of overfitting (generalized regression).
BTTR accounts for the underlying (hidden) data structure in
a fully automatic and computationally-efficient manner, leading
to a significant performance gain over conventional vector- or
matrix-based techniques in a challenging real-world application.
As a challenging real-world application, we apply BTTR to
accurately predict single finger movement trajectories from
intracranial recordings in human subjects. We compare the
obtained performance with that of the state-of-the-art.

Index Terms—tensor decomposition, partial least squares,
multiway data, tensor, block-term decomposition, brain computer
interfaces, electrocorticography, finger movement decoding

I. INTRODUCTION

BRAIN Computer Interfaces (BCIs) decode the user’s
intent from his/her brain activity directly, bypassing the

need for muscular control. Detection requires computational
processing to separate (“decode”) activity related to the in-
tended action from background noise after which the result
is sent to an actuator (see review [1]). The ability to control
a robotic limb or regain control over a paralyzed limb with
“motor-BCIs” has promoted the latter as a solution for patients
deprived from voluntary movement, but that are otherwise
fully conscious, due to spinal cord injury, brain stem stroke or
a degenerative disorder such as amyotrophic lateral sclerosis
(ALS). Extraordinary results have been achieved with func-
tional electrical stimulation (FES) of hand muscles [2], [3]
and prosthetic hands and arms, exoskeletons or other effectors
[4], [5], [6], [7].

In the last decade, BCI researchers are paying increased
attention to electrocorticography (ECoG) where brain activity
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is recorded via grids or strips of electrodes placed intracra-
nially on the cortical surface. Compared to multi-electrode
and deep brain implants, ECoG offers larger coverages of
cortical surface combined with more long-term signal stability
[8], [9] and, compared to electroencephalography (EEG), a
higher spatial resolution [10] and a larger spectral bandwidth
and signal amplitude [11]. Several studies [12], [13], [14],
[15], [16], [17], [18] reported that ECoG signals recorded from
the primary motor cortex can promote successful decoding of
continuous arm trajectories. Nevertheless, accurate decoding
of more subtle muscular activity such as single finger exten-
sion/flexion is considered the next challenge.

Currently, ECoG-based decoding approaches for finger
movements have been proposed based mainly on conventional
sparse [19], gaussian [20], linear regression [21], [22], Convo-
lutional Neural Networks (CNN), Random Forests (RF) and
deep learning networks (proposed in [23]). However, despite
the encouraging results, we advocate that finger trajectory
decoding could benefit from recent developments in multi-
linear algebra (multiway decoding) as ECoG is in essence
structured in space, time, and frequency domain. For instance,
in relation to muscular actions, a distinctive spatio-temporal-
spectral activity pattern can be observed in the motor cortex:
a decrease in activity in both the mu and beta bands follow-
ing movement onset termed event-related desynchronisation
(ERD) (Graimann et al., 2011), and an increase in beta band
activity following movement termination termed event-related
synchronisation (ERS) [24], whereby the spatial distribution
of both depends on the considered movement task. When
relying on a conventional vector- or matrix-based regression
model, the original multimodal structure is largely ignored
as the data is concatenated into vectors and matrices (aka
unfolding), which could cause the model to underperform
and hamper its interpretation [25]. Furthermore, the size of
the vectorized/matricized data calls for a model with a large
number of tunable parameters rendering it susceptible to noise
and redundancy [26]. Modern deep learning methods have also
been proposed, such as those based on Riemannian features
[27].

On the other hand, multiway models preserve the multilinear
structure of the data and support the discovery of potentially
hidden multilinear components [28]. For this reason, they have
attracted interest from researchers in neuroimaging, image and
video completion, numerical analysis, data mining, etc. The
two most popular multiway frameworks are Tucker (TKD)
and CANDECOMP/PARAFAC (or CPD) decompositions (see
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[28], [29] for review) and both aim to determine the low-
dimensional space where important information is residing.
While the former seeks a low multilinear rank (MTR) ap-
proximation of the tensor data, the latter approximates the
tensor data as a sum of rank-one tensors. Note that the concept
of rank is associated with the ”information content” of the
tensor: the lower the rank, the lower the information content.
Clearly, identifying the true rank of a tensor is the key to
accurate multiway analysis. De Lathauwer introduced a tensor
decomposition algorithm, called Block Term Decomposition
(BTD) [30], [31], [32], which can be seen as a unified
version of TKD and CPD. More specifically, in [32] two
BTD models were proposed to approximate N th-order tensor
data as a sum of K-blocks called rank-(Lk1 , ..., L

k
N ) BTD

and rank-(L1, ..., LN ) BTD with k=1,...,K. In the former
model blocks can have different MTR, whence in the latter
a unique MTR is chosen for all blocks. If there is only one
block, then BTD reduces to TKD. In contrast, if all blocks
have multilinear rank MTR = (1, 1, ..., 1), then it reduces to
CPD. This approach provides great flexibility and opens new
possibilities for multiway data analysis, above all when rank-
(Lk1 , ..., L

k
N ) BTD is adopted. For instance, a recent EEG study

[33] showed that, while CPD failed to model epileptic seizures,
rank-(L1, ..., LN ) BTD correctly extracted the ictal sources
that matched clinical assessment.

The abovementioned multiway frameworks have been
adapted for regression analysis to model the relationship
between arm trajectory and ECoG signals recorded from mon-
keys [34], [35] and recently between exoskeleton-based arm
trajectory, arm- and wrist rotations and ECoG signals recorded
from a tetraplegic patient with a spinal cord injury [18]. The
decoder in the latter case relies on a variant of multiway
partial least squares regression (NPLS), but is not capable of
achieving the kind of accuracy needed to decode fine limb
movements. Possible reasons for this underperformance are
the limited fitness ability, the high computational complexity
and the slow convergence of NPLS when handling higher-
order data [34]. On the other hand, Zhao et al. [34] developed
a powerful generalized framework, called Higher-Order Partial
Least Squares (HOPLS), based on (1, L2, ..., LN )-rank BTD
(i.e. all blocks have the same MTR), that provides enhanced
predictability with optimal balance between fitness and model
complexity. As a result, HOPLS was able to outperform
conventional PLS.

However, the success of HOPLS and other tensor-based
regression methods largely depends on the selection of appro-
priate model parameters, e.g., the number of latent variables,
a challenging issue and the subject of ongoing research.
Evidently, cross-validation could be used to identify the (near)
optimal parameter combination by assessing all (or as many
as desired) parameter combinations, but the ensuing compu-
tational effort could be too prohibitive to be practical, above
all in time-critical applications such as BCI. In addition, as
current multiway regression models use fixed MTRs, they do
not fully exploit the potential of rank-(Lk1 , ..., L

k
N ) BTD, above

all in cases where the true rank changes across blocks.
In order to accurately decode single finger movements from

ECoG signals, a challenging real-world application, we pro-

pose a fast and flexible multiway model based on (Lk1 , ..., L
k
N )

BTD (namely BTTR) with automatic parameter selection. In
this way, we tackle the computationally intensive parameter
estimation assumed by state-of-the-art tensor-based methods
as well as cases where the optimal MTR varies across blocks.
Further we introduce a marginalization procedure to obtain
robust predictions while reducing the risk of overfitting (gen-
eralized regression). Our motivation for both developments is
to promote tensor-based techniques in particular for BCI pur-
poses. In the next sections, we introduce a new TKD method
for automatic rank selection and latent component extraction
given two more or less correlated multiway variables, called
Automatic Component Extraction (ACE), and its improved
version augmented with automatic latent component selection,
called Automatic Correlated Component Selection (ACCoS).
The ACE or ACCoS models are embedded in the BTTR
process to sequentially extract the components that maximize
the correlation between multiway response and prediction. We
then applied BTTR on ECoG data taken from BCI competition
IV [36]. As a result, our model yields a higher accuracy
compared to HOPLS, linear regression [22], Random Forests
(RF), Convolutional Neural Networks (CNN), and Long Short-
Term Memory Network (LSTM) [23]. In this way, we wish
to promote the use of multiway modelling for real-world BCI
applications where accurate and fast decoding of brain activity
is required as in ECoG-based neuroprostheses.

II. PREVIOUS WORK ON AUTOMATIC MULTILINEAR
TENSOR RANK SELECTION

Large tensor data usually contains intrinsically low- di-
mensional information extractable with tensor frameworks
such as TKD, a form of higher-order principal component
analysis that is adopted in a broad range of applications
[37]. Given a tensor X ∈ RI1×...×IN , TKD decomposes X
into a smaller tensor (core tensor) and N factor matrices:
X ≈ G ×1 A(1) ×2 ... ×N A(n) with G ∈ RR1×Rn the
core tensor and A(n) ∈ RIn×Rn the factor matrix associated
with the nth mode. The obtained decomposition is often not
unique so that constraints such as orthogonality, sparsity or
nonnegativity are generally imposed on the factor matrices
and/or core tensor [38], [39], [40]. For instance, Higher-Order
Singular Value Decomposition (HOSVD) [38] and Higher-
Order Orthogonal Iteration (HOOI) [41] were proposed as
variants of TKD with orthogonality constraints on the factor
matrix.

The multilinear rank (MTR) is the tuple R1 × ...×Rn that
defines the size of the factor matrices and, hence, the core ten-
sor. The choice of MTR is generally considered critical: a large
MTR might lead to an approximation containing uninteresting
information; a small MTR might yield a low compression
ratio incapable of fully representing complex tensor data.
Recently, researchers have been focusing on determining the
MTR, and thus model complexity, in an automatic way. For
instance, Mørup and Hansen [42] proposed a method based
on Bayesian learning for sparse Tucker decomposition. In this
method, called ARD Tucker, the core tensor and matrices
are alternately and iteratively updated, while the number of
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components in each mode are determined using automatic
relevance determination (ARD). Yokota et al. [43] proposed
pruning sparse Tucker decomposition (PSTD) of which the
objective is to minimize the L1-norm of the core tensor
under conditions of error bound and orthogonality constraints
of individual basis matrices. At each iteration, the factor
matrices and the sparsity of the core tensor are updated, and
unnecessary dimensions removed according to the entries of
the latter. More recently, Yokota et al [44] published a Tucker-
rank estimation approach using robust minimum description
length (MDL): the rank Rn is estimated by applying the MDL
criterion on the distribution of the eigenvalues extracted from
the nth mode unfolded core tensor via HOSVD. This method
is referred to as SCORE. Shi et al. [45] proposed a multilinear
Tensor Rank Estimation based on L1-regularized orthogonal
CP decomposition (TREL1). Using a block coordinate de-
scent approach, the CP components and corresponding weight
vectors are iteratively updated. Finally, TREL1 automatically
determines the MTR by pruning the zero entries of the weight
vector.

III. METHODS

One of the main limitations of HOPLS, the current state-
of- the-art multiway regression models, is the assumed prior
knowledge of the model parameters, but this information is
commonly not available for a given real-word application.
Therefore, the computationally expensive cross-validation is
often used to identify these parameters. In addition, HOPLS
can be seen as a BTD-like approach where each block has the
same (1, L2, ..., LN )-rank which, in turn, limits flexibility in
data modelling. To tackle this, we first define a novel tensor
decomposition model with automatic MTR determination with
the intent to extract the components that are maximally cor-
related between two variables. Then, we include the proposed
model into a deflation-based method for multiway regression,
namely BTTR (Block Term Tensor Regression), for high flex-
ibility and interpretability. An overview of the mathematical
notation used can be found in Table I.

Using BTTR first requires formatting the data into a tensor
format. BTTR will work iteratively. Each iteration either ACE
or ACCoS is used for automatic parameter estimation. This is
followed by deflation before the next iteration starts.

A. Component extraction and selection

Given an N-way variable X ∈ RI1×...×IN and a vec-
toral variable y ∈ RI1×1, we aim to automatically extract
the latent components t and P (n)

N

(n=2), associated with the
n-th mode of X and maximally correlated with y, while
‖X‖ − JG; t,P(2), ...,P(N)K

F
is minimized. To this end, we

first introduce a novel model for tensor decomposition, char-
acterized by robust component extraction. Then, we extend
the proposed model with correlated component selection. An
overview of the proposed models is reported in Figure 1.

1) Modified PSTD for component extraction
Our new method for determining MTR uses sparsity con-

strains on the core tensor to prune irrelevant components. This
idea is inherited from the PTSD model which has recently

TABLE I
MATHEMATICAL NOTATION

Notation Description

T,M,v, S tensor, matrix, vector, scalar (respectively)
MT transpose of matrix
×n mode-n product between tensor and matrix
⊗ Kronecker product
◦ outer product
‖·‖F Frobenius norm
T(n) mode-n unfolding of tensor T
C(T ) core tensor associated to tensor T
M(n) mode-n factor matrix
Mind (sub-)matrix including the column(s) indi-

cated in ind
M\ind (sub-)matrix excluding the column(s) indi-

cated in ind
JC;M(1), ...,M(N)K full multilinear product C ×1 M(1) ×2

· · · ×N M(N)

〈T,E〉{n,n} mode-n cross-covariance tensor

Input: X ∈ RI1×...×IN ,y ∈ RI1×1, τ,SNR
Output: G ∈ R1×R2×...×RN , {P(n)}Nn=2

Initialisation :
1: C = 〈X,y〉(1) ∈ R1×I2×...×IN

2: Initialisation of {P(n)}Nn=2 and G using HOOI on C
LOOP Process

3: repeat
4: update G using SNR
5: prune {P(n)}Nn=2 and G using τ
6: until convergence is reached
7: return G, {P(n)}Nn=2

Fig. 1. mPSTD

proved to be a valid tool for MTR selection. We will refer to
the proposed model as modified PSTD (mPSTD). The mPSTD
model is first initialized with HOSVD. Then, iteratively, a
soft-thresholding rule based on parameter λ, alternated with
a threshold τ –adopted from standard PSTD–, are applied to
enhance model sparsity and to prune irrelevant components,
respectively. Note that in [43] SNR ∈ [1, 50] is used to derive,
via a line search, the optimal degree of sparsity λ of the
core tensor (see [43] for a derivation of λ). At each iteration,
the core tensor G is updated using the soft-thresholding rule
as G = sgn(G) × max{|G| − λ, 0}, while the threshold
τ ∈ [0, 100] is used to reject unnecessary components from the
n-mode S(n) = {r|100(1−

∑
i G(n)(r,i)∑
t,i G(n)(t,i)

) ≥ τ}, P(n) = P(n)(:

, S(n)) and G(n) = G(n)(S(n), :). The mPTSD is summarized
in Algorithm 1.

2) Proposed ACE for automatic component extraction
Importantly, in standard and modified PSTD, parameters

such as noise level of the data (SNR) and the threshold for
component rejection (τ ) are assumed to be known. However,
in reality, this is not always the case and can have an important
impact on model performance. Let us now define the mode-
1 cross-product between predictor and response variables as
C = 〈X,y〉(1) ∈ R1×I2×...×IN and its decomposition as
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Input: X ∈ RI1×...×IN ,y ∈ RI1×1
Output: G(X) ∈ R1×R2×...×RN , t, {P(n)}Nn=2

1: C = 〈X,y〉(1) ∈ R1×I2×...×IN

2: Initialisation of τ = 90, ..., 100; SNR= 1, ..., 50
3: for SNRi in SNR do
4: for τj in τ do
5: G, {P(n)}Nn=2 = mPSTD(X, y, SNRi, τj)
6: calculate BIC value corresponding to SNRi and τj

using Eq 1
7: end for
8: select τ∗ = argminτ BIC(τ)
9: calculate BIC value corresponding to SNRi and τ∗

using Eq 1
10: end for
11: select SNR∗ = argminSNR BIC(SNR, τ∗)
12: G, {P(n)}Nn=2 = mPSTD(X, y, SNR∗, τ∗)
13: t = (X×2 P

(2)T ×3 ...×N P(N)T )(1)vec(G)
14: t = t/‖t‖F
15: G(X) = JX; tT ,P(2)T , ...,P(N)T K
16: return G(X), t, {P(n)}Nn=2

Fig. 2. ACE

C ≈ JG(c);P(2), ...,P(N)K. We provide the model with
automatic SNR and τ selection based on Bayesian Information
Criterion (BIC) defined here as:

BIC(τ,SNR|SNR, τ∗) =

log(
‖C‖ − JG(c);P(2), ...,P(N)K

F

s
) +

log(s)

s
DF (1)

where G(c) and {P(n)}Nn=2 are the sparse core and factor
matrices obtained with mPSTD using specific τ and SNR val-
ues, s the number of entries in G, and DF the degree of free-
dom calculated as the number of non-zero elements in G(c), as
suggested in [46]. BIC is well known for its consistency in se-
lecting the true model [47] as it is based on a trade-off between
model fit and -complexity. A lower BIC value indicates a better
candidate. For each SNR value, the associated optimal τ is
computed as τ∗ = argminτ BIC(τ,SNR). Then, the optimal
SNR is determined as SNR∗ = argminSNR BIC(SNR, τ∗).
Once G(c) and {P(n)}Nn=2 are computed, the score vector t is
first calculated as

t = (C×2 P
(2)T ×3 ...×N P(n)T )(1)vec(G(c)),

and then normalized. We refer to this fully automatic
component extraction as ACE, summarized in Algorithm 2.

3) Automatic correlated component selection (ACCoS)
Once the core tensor G(c) and factors {P(n)}Nn=2 are

extracted via ACE, we select only the relevant components
in a fully automatic manner as well. The full process consists
of two steps: scoring (Step 1) and grouping (Step 2). In Step
1, for each n-mode factor, the single rth component is scored
using the R-squared test between x

(n)
r and y where

Fig. 3. Overview of the proposed models for component extraction and
selection.

Fig. 4. Scheme of BTTR algorithm with 3rd-order predictor variable X and
1st-order response variable y. Note that each block is computed using either
ACE or ACCoS further referred to as ACE-BTTR and ACCoS-BTTR.

x(n)
r = (X×2P

(2)T ×3 ...×nP(n)T
\r ×n+1 ...×N P(N)T )(1)

vec(G(c)
(n)\r) (2)

with G
(c)
(n)\r ∈ R(Rn−1)×(R1×...×RN ) the n-mode matri-

cization of the core tensor G(c) of which row r is removed.
A lower score indicates a higher relevance of the associated
(removed) component in the overall correlation between X
and y.

In Step 2, we iteratively group the most relevant compo-
nents. In order to select the smallest number of components
that maximizes correlation, we start with the component with
the lowest score in Step 1 and, then, iteratively add the one
with the next lowest score. At each iteration, a new score is
calculated using the R-squared test between x

(n)
ind and y where

x
(n)
ind = (X×2P

(2)T×3...×nP(n)T
ind ×n+1...×NP(N)T )(1)vec(G(c)

(n)ind)

(3)

with ind the index of the first D components with lowest
score and G

(c)
(n)ind ∈ RD×(Rn×...×RN ) the mode-n core tensor

Input: X ∈ RI1×...×IN ,y ∈ RI1×1
Output: G(X) ∈ R1×R2×...×RN , t, {P(n)}Nn=2

1: G, t, {P(n)}Nn=2 = ACE(X,y)
2: select correlated components using Eq 2 and Eq 3
3: t = (X×2 P

(2)T ×3 ...×N P(N)T )(1)vec(G)
4: t = t/‖t‖F
5: G(X) = JX; tT ,P(2)T , ...,P(N)T K
6: return G(X), t, {P(n)}Nn=2

Fig. 5. ACCoS
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Input: X ∈ RI1×...×IN ,y ∈ RI1×1,K
Output: {P(n)

k }, {tk},G
(X)
k for k = 1, ...,K ; n = 2, ..., N

1: Initialisation of E1 = X and f1 = y
2: for k = 1 to K do
3: if ‖Ek‖ > ε and ‖fk‖ > ε then
4: Ck = 〈Ek, fk〉{1,1}
5: G

(X)
k , tk,P

(2)
k , ...,P

(N)
k = ACE(Ek, fk) or AC-

CoS(Ek, fk)
6: bk = tkfk
7: Ek+1 = Ek − JG(X)

k ; tk,P
(2)
k , ...,P

(N)
k K

8: fk+1 = fk − tkbk

9: else
10: break
11: end if
12: end for

Fig. 6. BTTR

G(c) in which D rows are selected. The selection process stops
when the score starts to decrease. Finally, like ACE, given
the new core tensor G(c) and factor matrices {P(n)}Nn=2 with
selected components, the score vector t is first computed as

t = (C×2 P
(2)T ×3 ...×N P(n)T )(1)vec(G(c))

and then normalized. The complete framework is summa-
rized in Algorithm 5 and further referred to as ACCoS.

B. Block-Term Tensor Regression (BTTR)

We propose a novel Block-Term Regression (BTTR) model
based on (Lk1 , ..., L

k
N ) BTD with automatic MTR determina-

tion. More specifically, BTTR is a deflation-based method in
which the maximally correlated representations of X and y
are extracted via ACE/ACCoS at each iteration. Therefore,
BTTR inherits the advantages of the proposed ACE/ACCoS
and does not require one to set the model parameters manually.
This provides BTTR with an additional important property: the
ability to model complex data in which the optimal MTR is not
necessarily stable across sequential decompositions. A scheme
of BTTR is shown in Figure 2 whereas the full process is
shown in Algorithm 6. In the rest of the paper, when required,
we will use the terms ACE-BTTR and ACCoS-BTTR to refer
to ACE and ACCoS in BTTR, respectively.

Given a set of training data Xtrain ∈ RI1×...×IN and vectoral
response ytrain ∈ RI1 , BTTR training consists of automatically
identifying K blocks s.t.

Xtrain =

K∑
k=1

Gk ×1 tk ×2 P
(2)
k ×3 ...×N P

(n)
k +Ek

ytrain =

K∑
k=1

uk + fk with uk = tkbk

with Gk ∈ R1×Rk
2×...×R

k
N the core tensor for the kth-block,

P
(n)
k the kth loading matrix for the n-mode, uk and tk the

score vectors, bk the regression coefficient, and Ek and fk the

residuals. Once the model is trained – and, hence, Gk, P(n)
k

and bk are computed – the final prediction is obtained as:
ytest = Tb = Xtest(1)Wb where each column wk = (P

(n)
k ⊗

...⊗P
(2)
k )vec(Gk).

1) Generalized Block-Term Tensor Regression (gBTTR)
One possible limitation of BTTR is the lack of generaliza-

tion as it aims to maximize the correlation between Xtrain and
ytrain only, and this can lead to overfitting. Starting from the
above prediction equation, we can re-write the above as the
well-known linear regression equation ytest = Xtest(1)bBTTR
with bBTTR = Wb.

In the context of linear regression, it has been shown that
by randomly adding Gaussian noise ε ∼ (0, σ) to the inputs
increases the robustness of the model against overfitting while
improving its generalization [48]. More specifically, the pro-
cess consists of fitting the linear regression to the manipulated
noisy data. Clearly, different regression lines are obtained each
time random noise is added to the data. Therefore, to obtain
a stable result, a process called marginalization is introduced
to integrate out such randomness. In practice, marginalization
consists of averaging the estimated regression lines. Such
averaged regression line with noise σ is equal to the ridge
regression line with penalty parameter λ = Nσ2 [48] with
N the number of observations in the data set. We adopt the
aforementioned idea as follows: At each iteration k, fk is
manipulated M times by adding random Gaussian noise; for
each fMk the corresponding wM

k bM
k solution is determined;

then, we compute the averaged solution (marginalization),
ŵkb̂k, followed by deflation before the next iteration. The
final prediction is ytest = Xtest(1)b̂BTTR where the kth element
in b̂BTTR is computed via marginalization in the kth iteration,
i.e. ŵkb̂k. We will refer to this ridge-like approach as gener-
alized BTTR (gBTTR).

C. Time Complexity Analysis

Given training data Xtrain ∈ RI1×...×IN and vectoral
response ytrain ∈ RI1 with I1 = I2 = ... = IN and
R1 = R2 = ... = RN , gBTTR has appromimately time
complexity O(I(N)R+R3(N−1)+R2(N−1)I). For comparison,
HOPLS, under the same circumstances, has time complexity
O(I(N+M)R2 +R4(N+M−2) +R3(N+M−2)I) [49].

D. Non-multilinear approaches

As multilinear approaches are less common in BCI, we
will consider the BCI competition IV dataset (see further) for
comparing the performance of BTTR and HOPLS with the
winner of this competition a linear regression model based on
amplitude modulation (AM) [22], as well as with more recent
attempts based on Random Forests (RF), Convolutional Neural
Networks (CNN), and Long Short-Term Memory Network
(LSTM) (proposed and compared in [23]).

Since in both [22] and [23] only 1 test set was used to assess
performance, which factually impedes statistically testing the
significance of any observed performance difference between
the compared algorithms, we have re-implemented AM, RF,
LARS, CNN and LSTM. We proceeded as follows.



6

For AM, we replicated the procedure described in [22].
First, we filtered the ECoG signals in the sub-gamma (1-
60Hz), gamma (60-100 Hz) and high-gamma bands (100-200
Hz). For each of these bands, we determined the amplitude
modulation and used it to estimate their band-specific AM
features. For each finger and subject, we used forward feature
selection using a wrapper approach to find the relevant AM
features. These features are then used in a linear regression
model. Finally, we verified whether the obtained performance
compared with the one reported in [22].

For LARS, we used the LassoLars function from the most
recent version of the scikit-learn package of Python (version
0.24.2 released in April 2021; we assume that Xie et al.
used version 0.19.1, but this was not reported). Hence, small
differences in performance could be occur. LARS transforms
the original signal using ICA, decomposes it into different
bands, calculates band powers and fits a LassoLars model.
LassoLars has one main parameter, α, the multiplier for the
penalty term whereby α = 0 corresponds to ordinary least
square linear regression. A line search was used to optimize
alpha.

For RF, a similar processing pipeline was used. The Ran-
domForestRegressor function from the scikit-learn package
was used (same version as above). RF transforms the original
signal using ICA, decomposes it into different bands, calcu-
lates band powers and fits the RandomForestRegressor model.

The CNN and LSTM were built according to the specifi-
cations and architecture given in [23]. CNN refers to a linear
regression model applied to features prior extracted using a
CNN. The CNN and LSTM were build using PyTorch in
Python (version 1.8.0 released in March 2021; note that Xie
et al. did not specify which version they used).

Temporal SVM-rbf and Temporal lightGBM, introduced in
[27] use Riemannian-space features and temporal dynamics of
the ECoG signal combined with modern machine learning.

IV. DATA SETS USED

We first use synthetic data to compare state-of-the-art meth-
ods of automatic MTR determination versus the proposed
ACE and ACCoS. Then, we adopt a real-world scenario
for BTTR, HOPLS and several linear regression- and deep
learning methods: decoding finger movement trajectories from
ECoG recordings in humans, a challenging goal in the BCI
community due to the presence of irrelevant and nonstationary
brain activity and noise.

A. Synthetic Data For Component Analysis

The synthetic data is created for the predictor Nth-order
tensor variable X = Xc + (1 − α)Xu ∈ RI1×...×IN and the
response vector variable y ∈ RI1×1. The response variable y
is randomly generated. The Xu ∼ N (0, 1) is an uncorrelated
tensor with randomly generated entries while Xc is the true
correlated tensor, defined according to the Tucker model as
Xc = JG, t,P(2), ...,P(N)K with t,P the score vector and
the factor matrices, and G ∼ N (0, 1) ∈ R1×R2×...×RN the

randomly generated core tensor. Note than R1 = 1. The entries
(rn, in) of the loading factor P(n) ∈ RIn×Rn are defined as

P(n)
r


sin(2πr2

i2
I2
) for n = 2

cos(2πr3
i3
I3
) for n = 3

sgn(sin(2πr4
i4
I4
)) for n = 4

with rn = 1, ..., Rn and in = 1, ..., In, whereas the score
factor t ∈ RI1×1 is set equal to y. The parameter α defines the
weight of Xu on the final tensor X and, therefore, regularizes
the correlation level between X and y with α = 1 and α = 0
yielding, respectively, maximal and minimal correlation.

We performed a series of tests to evaluate the robustness of
the proposed ACE model as well as mPSTD and ACCoS under
different conditions and compared their performances with the
state-of-the-art models in automatic rank determination (see
Previous work on automatic multilinear tensor rank selection).
Several tests are performed by varying data properties aimed
at showing how they affect the recovery of the true correlated
(hidden) components. We chose N=4 and varied one property
at a time while keeping the others constant. The data properties
we explored are listed below:
• Correlation level: parameter α is chosen as 0.1, 0.5 or 1

to regularize the interference of uncorrelated sources.
• Number of components (i.e. MTR): parameter set
R2, ..., RN defines the size of the (correlated) factors
P(n) ∈ RIn×RN

N

n=2, i.e., the components of interest,
and are heuristically chosen as [1, 1, 1], [2, 2, 1], [2, 1, 2],
[1, 2, 2], or [2, 2, 2].

• Tensor dimensionality: parameter set I2, ..., IN ∈
[5, 5, 5], [10, 10, 10], or [20, 20, 20] defines the dimen-
sionality of the Nth-order independent variable X.

• Sample size: parameter I1 ∈ 100, 1000, or 10000 defines
the number of observations.

We used two values to assess performance: how accurately
the expected true components are retrieved (C1) and how
much of the relevant information is contained in the extra
components (C2). Note that we report NA for C2 when no
extra components are available. We repeated each test 10 times
and for each run the data was randomly generated as described
above. Finally, we reported C1 and C2 in terms of mean and
standard deviation as well as number of extra components
averaged across modes.

B. Regression Analysis Of Real-Word Data: Decoding Finger
Movement Trajectories From ECoG Signals Recorded in Hu-
mans

We also compared the proposed BTTR versions with HO-
PLS as well as several conventional linear regression ap-
proaches and deep learning networks in a real-word appli-
cation. We adopted the dataset used in BCI competition IV
where the task was to predict continuous finger flexions from
ECoG signals recorded from the motor cortex, sampled at 1000
Hz. Three subjects were cued to move a particular finger at
a particular moment (gauged with a data glove). In total, 150
trials were executed (30 trials per finger) in a single session
lasting 600 seconds. For each trial, subjects typically flexed
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the cued finger 3–5 times for 2 seconds followed by a rest
period of 2 seconds. The first 400 and the last 200 seconds
of recording were used as training and testing set respectively.
The number of ECoG channels varied across subjects. More
details about the data can be found in [36].

1) Data preparation for multiway analysis
First, the ECoG and data glove signals were preprocessed.

The data glove data was, independently for each finger,
normalized (z-scores) yielding a vector y ∈ RSamples for each
finger. The ECoG signal was first inspected to identify and
further exclude bad channels: we found that channels 55 in
subject 1, 21 and 38 in subject 2, and 50 in subject 3 were
affected by strong artifacts and therefore removed. The remain-
ing channels were re-referenced using the common average
reference (CAR) technique [50]. Then, using bidirectional
fourth-order Butterworth band-pass filters, the ECoG signals
were subjected to 8 band-pass filters, as commonly done in
ECoG based BCI [37]: δ (1.5 -5 Hz), θ (5 -8 Hz), α (8 -12
Hz), β1 (12 -24 Hz), β2 (24 -34 Hz), γ1 (34 -60 Hz), γ2 (60 -
100 Hz), γ3 (100 - 130 Hz). For each cued finger flexion trial,
the glove data and the bandpass filtered ECoG signals were
extracted starting 1 sec prior to trial onset (”epoch”). ECoG
epochs were downsampled to 10 Hz to further reduce data
size. All epochs were then concatenated into a unique fourth-
order tensor X ∈ RSamples×Channels×8(Frequencies)×10(Time). There
were 62, 48, and 64 ECoG channels for subjects 1, 2, and 3,
respectively. Finally, X is normalized (z-scores) to reduce the
difference in magnitude between frequency bands. A graphical
representation of the data preparation is shown in Figure 7.

2) Calibration, validation, performance assessment
A 5-fold cross-validation approach was used to optimize

the model parameters on the training data, i.e., K,R2, ..., RN
for HOPLS and K for BTTR. In addition, in support of
the statistical analysis, the test data was split into 5 non-
overlapping blocks. We also proceed in this way for the
winning algorithm of the BCI competition IV, as well as its
more recent attempts.

The decoding performance for each block was measured
using Pearson’s correlation coefficient between predicted and
actual movement trajectory, which are then averaged. We used
a two-tailed Wilcoxon signed-rank test [51] to compare the
models for each subject. Two results are considered signifi-
cantly different if the p-value is < 0.05.

V. RESULTS

In this section, we compare the results obtained for the
state-of- the-art methods of automatic MTR selection and the
proposed ACE and ACCoS for the case of synthetic data,
under different conditions. Then we compare the predictive
performance of the proposed multiway regression, BTTR, with
and without automatic component selection, for a real-world
scenario.

A. ACE And ACCoS On Synthetic Data For Component Ex-
traction

For the synthetic data case, we performed various tests
to verify model robustness under different conditions such

as 1) correlation level between X and y, 2) rank size, 3)
tensor dimensionality, and 4) sample size. We first show
the efficiency of the proposed ACE against manual tuning
of model parameters required for the proposed mPSTD and
standard PSTD. Then we compare ACE and ACCoS with
state-of-the-art methods under the same conditions.

In Figure 8 we show an example of mPSTD and standard
PSTD (top panels) as well the outcome of the BIC analysis
included in ACE for the automatic selection of model parame-
ters SNR and τ (bottom panels) when α = 0.5, R2, R3, R4 =
[2, 2, 2], I1 = 10000, and I2, I3, I4 = [20, 20, 20]. Initial-
ization of the factor matrices seems to be a key element in
extracting the correct components and in overall convergence.
This is not noticed when comparing mPSTD and standard
PSTD (Figure 8, top panel). The proposed mPSTD tends to be
less sensitive to the choice of model parameters as for standard
PSTD, which relies on random initialization, only few SNR-τ
combinations lead to a correct solution. Interestingly, mPSTD
generally yields a more accurate solution (max C1 = 1) than
standard PSTD (max C1 = 0.81). In addition, the outcome of
this study shows that ACE, as it relies on the BIC approach,
is able to determine the optimal model parameters (leading
to C1 = 1) under any condition in a fully automatic way.
An obvious advantage of the proposed ACE is the automatic
selection of the parameters –generally obtained via cross-
validation– and the absence of any prior assumptions.

Additional tests showed that both ACCoS and ACE per-
form at least as good as the other state-of-the-art methods
TREL1 and SCORE as they are able to retrieve, in a fully
automatic way, the true correlated components regardless of
the properties of the data (cf., C1 result). However, ACCoS
differs from the others as it can successfully identify and
reject irrelevant components (cf., C2 result). An example is
reported in Figure 9 where the correlation level between the
two variables changes while fixing R2, R3, R4 = [2, 2, 2],
I1 = 10000, and I2, I3, I4 = [20, 20, 20].

B. BTTR on Real-World Data: Decoding Finger Movement
Trajectories from Human ECoG Recordings

For clarity’s sake, we first compared the proposed versions
of BTTR against HOPLS to select the best BTTR version
on a real-world case,then compared this version against the
BCI competition IV winner and the more recent attempts.
We analyzed for each subject one finger at a time. Figure 10
shows an example of predicted finger movement for gBTTR
and HOPLS together with the data glove signal.

1) Comparison of multiway regression approaches:
BTTR versions against HOPLS

In Figure 11, we show for each subject (panels shown
row-wise) the averaged (across fingers) correlation coefficients
obtained when predicting test samples (Study 1, panels in left
column) and when predicting samples used for model training
(Study 2, panels in right column).

When analyzing the results of Study 1, statistical analysis
(see Calibration, validation, performance assessment) revealed
no significant difference between the performance of BTTR
and that of its generalized version gBTTR. However, ACCoS-



8

Fig. 7. Diagram with the steps to create an ECoG tensor.

gBTTR performs better compared to ACE-gBTTR and HO-
PLS for subject 3 (gray brackets).

In Study 2, ACCoS-BTTR performs equally well as ACE-
BTTR and both models provide better accuracies than HOPLS
(black brackets, all subjects). When considering the gBTTR
version, performances are lower than with BTTR. Indeed,
except for subject 2 (gray brackets), the difference with
HOPLS tends to disappear when using gBTTR.

To summarize, for ACCoS-gBTTR, prediction accuracy
of the test data improved while that of its training data
decreased: the predictions obtained with ACCoS-BTTR, ACE-
BTTR and ACE-gBTTR are comparable to the ones obtained
with HOPLS while for ACCoS-gBTTR they are at least as
good. Hence, seemingly, the generalized version of BTTR is
able to limit the effect of overfitting mainly for ACCoS-BTTR;
indeed, ACE-BTTR extracts also components that are not of
interest and that -as in the HOPLS case–demote prediction
accuracy.

We further investigated the runtime required by these mod-
els to identify their parameters. Overall, ACE-BTTR and
ACCoS-BTTR are trained faster than HOPLS (e.g. 3 minutes
and 8 minutes respectively against 14 hours for HOPLS).
This is in line with the time complexity found for the algo-
rithms. Note that HOPLS requires computationally expensive
techniques such as cross-validation to identify the optimal set
of model parameters (i.e., the number of scores and loadings).
In contrast, BTTR and gBTTR automatically determine the
model parameters (i.e., the number of loadings) leading to
a model that combines high flexibility with more natural
representation of complex multiway data, although it still
requires (a simple) cross-validation to determine the number
of scores. The next comparison continues with ACE-BTTR as
it is the most well-rounded of the various versions in terms of

speed and performance.
2) Comparison with non-multiway approaches
We also compared the ACE-BTTR model and HOPLS with

the winner of the BCI competition IV, linear regression of
amplitude modulation (AM) [22], as well as 4 more recent
attempts as the competition concluded some time ago: Random
Forest (RF), Least Angle Regression (LARS), Convolutional
Neural Network (CNN), and Long Short-Term Memory Net-
work (LSTM). The correlation coefficients are given for each
finger individually and averaged across all fingers, except for
finger 4 (ring) as flexing the latter is difficult to suppress when
the 3rd or 5th finger is flexing. The average results and their
standard deviations for the 5 blocks of test data (see above) are
listed in Table II, Table III and Table IV (listed under Avg.)
for subjects 1, 2 and 3, respectively.

For all 3 subjects, a statistically significant difference (see
Calibration, validation, performance assessment) in average re-
sults was found between ACE-BTTR and LSTM and between
AM/RF/LARS and ACE-BTTR. It is interesting to note that on
a per-finger basis, there was not always a statistically signif-
icant difference between individual algorithms. For instance,
for all 3 subjects, there is no statistical difference for the thumb
and index finger between ACE-BTTR and LSTM. For subjects
1 and 3, there is a significant difference for the middle finger
between ACE-BTTR and LSTM. For subjects 1 and 2, there
is a significant difference for the pinky between ACE-BTTR
and LSTM.

SVM-rbf and LightGBM [27] are the main state-of-the-
art methodologies. ACE-BTTR performs better for subject 1
compared to these methodologies. LightGBM performs better
compared to ACE-BTTR for subject 2. Looking at a per-finger
case, the main difference is the middle finger which performs
far better in LightGBM. For subject 3, ACE-BTTR performs
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(a) a (b) b

(c) c (d) d

Fig. 8. Top left panel (Standard PSTD): C1 accuracy (color coded, see scale on the right) achieved by standard PSTD when (manually) varying model
parameters SNR and τ . Top right panel (mPSTD): idem but for the proposed mPSTD. Bottom left (BIC-SNR) and right (BIC-Ratio for best SNR): filled
circles indicate the selected SNR (50) and τ (99.7) values.

Fig. 9. Results of correlation analysis when varying the correlation parameter
α while keeping R2, R3, R4 = [2, 2, 2], I1 = 10000, and I2, I3, I4 =
[20, 20, 20]. The reported values represent the correctness of the expected
components (C1) and the extra components (C2 with average of number of
extra components in brackets).

equally to LightGBM with better decoding for middle, ring
and thumb, but worse performance for the thumb and index
finger.

VI. CONCLUSION

Tensor techniques can be an important asset to BCI as they
can outperform more conventional decoders in accuracy and

Methods Thumb Index Middle Ring Pinky Avg.
ACE-BTTR 0.72 ± .06 0.77 ± .09 0.38 ± .02 0.68 ± .04 0.67 ± .02 0.64 ± .05

HOPLS 0.70 ± .05 0.79 ± .08 0.36 ± .03 0.70 ± .06 0.65 ± .02 0.63 ± .04
AM 0.57 ± .03 0.69 ± .06 0.14 ± .02 0.52 ± .04 0.28 ± .01 0.42 ± .03
RF 0.58 ± .09 0.54 ± .05 0.07 ± .03 0.31 ± .05 0.33 ± .02 0.38 ± .05

LARS 0.11 ± .05 0.08 ± .03 0.10 ± .02 0.60 ± .05 0.39 ± .02 0.17 ± .03
CNN 0.67 ± .04 0.78 ± .04 0.11 ± .02 0.54 ± .03 0.45 ± .04 0.50 ± .04

LSTM 0.73 ± .03 0.79 ± .08 0.18 ± .02 0.61 ± .04 0.45 ± .04 0.54 ± .04
SVM-rbf 0.594 0.734 0.364 0.395 0.480 0.54

LightGBM 0.543 0.760 0.401 0.383 0.531 0.558
TABLE II

FINGER TRAJECTORY DECODING PERFORMANCE (PEARSON
CORRELATION) OF BTTR AND OTHER MODELS FOR SUBJECT 1.

Methods Thumb Index Middle Ring Pinky Avg.
ACE-BTTR 0.64 ± .05 0.46 ± .08 0.27 ± .04 0.50 ± .03 0.48 ± .01 0.46 ± .05

HOPLS 0.63 ± .04 0.47 ± .06 0.26 ± .05 0.51 ± .02 0.48 ± .01 0.44 ± .04
AM 0.52 ± .03 0.36 ± .06 0.23 ± .02 0.48 ± .04 0.33 ± .01 0.36 ± .03
RF 0.52 ± .05 0.36 ± .04 0.22 ± .03 0.39 ± .04 0.25 ± .02 0.34 ± .04

LARS 0.54 ± .05 0.41 ± .04 0.18 ± .02 0.44 ± .04 0.25 ± .02 0.35 ± .03
CNN 0.60 ± .04 0.40 ± .04 0.24 ± .02 0.44 ± .03 0.28 ± .04 0.38 ± .04

LSTM 0.62 ± .03 0.38 ± .08 0.27 ± .02 0.47 ± .04 0.30 ± .04 0.39 ± .04
SVM-rbf 0.591 0.481 0.344 0.421 0.437 0.463

LightGBM 0.658 0.522 0.387 0.392 0.407 0.493
TABLE III

IDEM TO TABLE II BUT FOR SUBJECT 2.
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Fig. 10. Predicted ring finger flexions of Subject 1. Actual (data glove) and
predicted (regression models) finger flexion amplitudes (z-scores) are plotted
as function of time (in ms), Curve colors are explained in the inset. For the
sake of exposition, only results for the generalized version gBTTR are shown.

Methods Thumb Index Middle Ring Pinky Avg.
ACE-BTTR 0.73 ± .05 0.59 ± .08 0.64 ± .04 0.63 ± .02 0.72 ± .01 0.67 ± .05

HOPLS 0.74 ± .06 0.57 ± .09 0.65 ± .02 0.61 ± .04 0.68 ± .02 0.64 ± .04
AM 0.59 ± .03 0.51 ± .06 0.32 ± .02 0.53 ± .04 0.42 ± .01 0.46 ± .03
RF 0.67 ± .05 0.27 ± .04 0.16 ± .03 0.14 ± .04 0.36 ± .02 0.37 ± .04

LARS 0.72 ± .05 0.43 ± .04 0.45 ± .02 0.51 ± .04 0.64 ± .02 0.56 ± .03
CNN 0.74 ± .03 0.53 ± .05 0.45 ± .04 0.49 ± .03 0.68 ± .06 0.60 ± .05

LSTM 0.74 ± .02 0.55 ± .06 0.46 ± .04 0.41 ± .02 0.75 ± .06 0.62 ± .05
SVM-rbf 0.767 0.654 0.513 0.347 0.638 0.643

LightGBM 0.82 0.648 0.578 0.358 0.664 0.6775
TABLE IV

IDEM TO TABLE II BUT FOR SUBJECT 3.

reliability but their proliferation is hindered by the computa-
tional intensive parameter estimation. Model parameters are
often optimized via time consuming techniques such as cross-
validation on a sufficient set of parameter combinations. To
tackle this limitation, we proposed a new tensor decomposition
approach for regression that we enhanced with automatic rank
determination and showed that it can challenge state-of-the-
art multiway regression techniques while outperforming more
conventional ones. The proposed solution is characterized by
flexible modeling, supporting the representation of complex
data, and by fast model training. This can open new perspec-
tives for multiway data modeling in BCI applications.
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