Towards a core language with row-based effects for
optimised compilation

Introduction Author: Axel Faes

Advisor: Tom Schrijvers KU LEUVEN

Algebraic effect handlers effect Decide : unit -> bool;;
A feature for side effects and
exception handlers on steroids let choose all = handler
[1, 2] | #Decide () kR -> k true @ k false New Core Language
o ations b " | val x -> [x];;
pmegaelt?en AHONS Mave THHmS , Based on calculus from Terms of core calculus
| | with choose all handle Links [7]
= handlers or continuations _ let x = -=> row polymorphic valuev == x variable
need to be repeatedly copied (if #Decide () then 10 else 20) type-&-effect system k constant
[3] in Alx : A).c function
=> Evaluation of effects let y = Other row-based systems Aa.c type abstraction
| | (if #Decide () then @ else 5) > Koka [6, 8] { apncics
Elaborate into representation in - PureScript (with Eff PERUER 3159 673 FELuEn case
without algebraic effect handlers X -y monad) [9] ; [Opx k > coplopeo operation cases
: . compc == VU application
Work in Eff programming (* OQutput: [10; 5; 20; 15] *) The row-based effects are 4 'ulAz t:{)::e application
language based on row letrec fx =c; incy; rec definition
polymorphism and natural return v returned val
fit for effects. e s ;ﬂ“
Background: Optimisations handlsowithes hndling

Explicitly typed core

calculus and row-based Types of core calculus

Term rewrite rules Preliminary results effects make the
1. remove handlers / apply effects Eff compared to regular OCaml, source-to-source (pure) type A,B == A—C function type
2. expose optimisations Multicore Ocaml, HandlersInAction transformations less C=D handler type
[4] and EffDirectlylnOCaml [5] error-prone. a type variable
Purity aware compilation ‘ Va.C polytype
Identify computations that are pure Need to add optimisations for edge dirty type C,D == AlA
cases dirt A := {0Opy,...,0p,}

> ® Free monad representation

-> / Regular OCaml code

Ongoing Work

100 129 100 B Basic 100 100 Implementation Other solutions
) 78.5 s (N e = Integration into the Eff programming An unification based algorithm for
& Epur::fpt - 623 language. subtyping based type-&-effect
é 50 Il Native SyStem. [10]
& Metatheory
5 ae The metatheory is under development.
: Pure Latent Incr State
Loop program variations
200 I Relative percentage S um mary
150
Algebraic effects and handlers are a very active area of research. An
100 important aspect is the development of an optimising compiler.
°9 | Without a type-&-effect system with explicit typing, it is easy for type
0 MGl S Sz checking bugs to be introduced during the construction of optimised
2 4 0 i = 12 14 compilation.
— OCAML ~#— MULTICORE =—©— HANDLERSINACTION -+ EFFINOCAML —@— Err(PUREOPT)

n-queens: all solutions

A core language with row-based effects was introduced. The core language
IS explicitly typed in order to reduce bugs in the optimised compilation.

Research Problem

ilati Source language
Compl_latlon of effect ha_ndlers_ _ 9 9 [1] Andrej Bauer and Matija Pretnar. 2015. Programming with [7] Daniel Hillerstrom and Sam Lindley. 2016.
Terms in Eff do not contain explicit type effect Op : unit -> int;; algebraic effects and handlers. Journal of Logical and Liberating Effects with Rows and Handlers. In
. : Algebraic Methods in Programming. 84, 1 (2015), 108-123. Proceedings of the 1st International Workshop on
information [3]
https://doi.org/10.1016/j.jlamp.2014.02.00 Type-Driven Development (TyDe 2016). ACM, New
_ . o York, NY, USA, 15-27.
: let rec x () B #Op () 2 [2] Andrej Bauer and Matija Pretnar. 2014. An Effect System https://doi.org/10.1145/2976022.2976033
Source-to-source transformations are for Algebraic Effects and Handlers. Logical Methods in
_ Computer Science 10, 4 (2014). [8] Daan Leijen. 2017. Type Directed Compilation of
error prone let result = https://doi.org/10.2168/LMCS-10(4:9)2014 Row-typed Algebraic Effects. In Proceedings of the
handle (X ()) with [3] Gordon D. Plotki d Matija Pret 2013. Handli IL-}’4’[h e 'SIGI_PLAN SympzlgglléT (2)81F;r)in,§\i0p:\78 ﬁf
. . ordon D. Plotkin and Matija Pretnar. . Handling rogramming Languages : , New
Ensuring transformations do not break | #0p () kR -> k 1 Algebraic Effects. Logical Methods in Computer Science 9, 4 York, NY, USA, 486-499.
typablllty IS time Consuming (2013). https://doi.org/10.2168/LMCS-9(4:23)2013 https://doi.org/10.1145/3009837.3009872
[4] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. [9] Phil Freeman. 2017. PureScript: Handling Native
. T . Handlers in Action. SIGPLAN Not. 48.9 (Sept. 2013), pp. Effects with the Eff Monad.
Example o After function specialisation 145-158. issn: 0362-1340. doi: 10.1145/2544174.2500590. https://github.com/purescript/documentation/blob/ma
function specialisation of handle (let rec) : : url: http:/doi.acm.org/10.1145/2544174.2500590. ster/quides/Eff.md
effect Op : unit -> 1int;;
[5] Kiselyov, Oleg, and K. C. Sivaramakrishnan. 2016. Eff [10] .Stephen Dolan and Alan Mycroft . 2017.
X Specia”sation => expose Optimisations directly in OCaml. ML Workshop. Polymorphism, Subtyping, and Type Inference in
. : 1 r X = #0O . o MLsub. In Proceedings of the 44th ACM SIGPLAN
-> Makmg copy of x and brmg handler et rec () P () g [6] Daan Leijen. 2014. Koka: Programming with row Symposium on Principles of Programming
inside bOdy polymorphic effect types. arXiv preprint arXiv:1406.2061 Languages (POPL 2017). ACM, New York, NY,
2014). USA, 60-72.
let result = (’

https://doi.org/10.1145/3009837.3009882

let rec x _spec () =
handle (#0p ()) with
| #0p () kR -> k 1

in x_spec ()

The optimisation needs to correctly
handle types of the copy of x

Acknowledgements

| would like to thank Amr Hany Saleh for his continuous guidance and help.
| would also like to thank Matija Pretnar for his support during my research.

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.2168/LMCS-9(4:23)2013
http://doi.acm.org/10.1145/2544174.2500590
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/3009837.3009872*
https://github.com/purescript/documentation/blob/master/guides/Eff.md
https://github.com/purescript/documentation/blob/master/guides/Eff.md
https://doi.org/10.1145/3009837.3009882

