
Towards a core language with row-based effects for
optimised compilation

Author: Axel Faes
Advisor: Tom Schrijvers

New Core Language

Background: Optimisations

Term rewrite rules
1. remove handlers / apply effects
2. expose optimisations

Purity aware compilation
Identify computations that are pure

➔ Free monad representation

➔ Regular OCaml code

Types of core calculus

Terms of core calculus

effect Op : unit -> int;;

let rec x () = #Op ();;

let result =
handle (x ()) with

 | #Op () k -> k 1

effect Op : unit -> int;;

let rec x () = #Op ();;

let result =
let rec x_spec () =

handle (#Op ()) with
 | #Op () k -> k 1
in x_spec ()

Source language

After function specialisation

Preliminary results
Eff compared to regular OCaml,
Multicore Ocaml, HandlersInAction
[4] and EffDirectlyInOCaml [5]

Need to add optimisations for edge
cases

Summary

Algebraic effects and handlers are a very active area of research. An
important aspect is the development of an optimising compiler.

Without a type-&-effect system with explicit typing, it is easy for type
checking bugs to be introduced during the construction of optimised
compilation.

A core language with row-based effects was introduced. The core language
is explicitly typed in order to reduce bugs in the optimised compilation.

References
[1] Andrej Bauer and Matija Pretnar. 2015. Programming with
algebraic effects and handlers. Journal of Logical and
Algebraic Methods in Programming. 84, 1 (2015), 108–123.
https://doi.org/10.1016/j.jlamp.2014.02.00

[2] Andrej Bauer and Matija Pretnar. 2014. An Effect System
for Algebraic Effects and Handlers. Logical Methods in
Computer Science 10, 4 (2014).
https://doi.org/10.2168/LMCS-10(4:9)2014

[3] Gordon D. Plotkin and Matija Pretnar. 2013. Handling
Algebraic Effects. Logical Methods in Computer Science 9, 4
(2013). https://doi.org/10.2168/LMCS-9(4:23)2013

[4] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013.
Handlers in Action. SIGPLAN Not. 48.9 (Sept. 2013), pp.
145–158. issn: 0362-1340. doi: 10.1145/2544174.2500590.
url: http://doi.acm.org/10.1145/2544174.2500590.

[5] Kiselyov, Oleg, and K. C. Sivaramakrishnan. 2016. Eff
directly in OCaml. ML Workshop.

[6] Daan Leijen. 2014. Koka: Programming with row
polymorphic effect types. arXiv preprint arXiv:1406.2061
(2014).

Acknowledgements
I would like to thank Amr Hany Saleh for his continuous guidance and help.
I would also like to thank Matija Pretnar for his support during my research.

[7] Daniel Hillerström and Sam Lindley. 2016.
Liberating Effects with Rows and Handlers. In
Proceedings of the 1st International Workshop on
Type-Driven Development (TyDe 2016). ACM, New
York, NY, USA, 15–27.
https://doi.org/10.1145/2976022.2976033

[8] Daan Leijen. 2017. Type Directed Compilation of
Row-typed Algebraic Effects. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL 2017). ACM, New
York, NY, USA, 486–499.
https://doi.org/10.1145/3009837.3009872

[9] Phil Freeman. 2017. PureScript: Handling Native
Effects with the Eff Monad.
https://github.com/purescript/documentation/blob/ma
ster/guides/Eff.md

[10] .Stephen Dolan and Alan Mycroft . 2017.
Polymorphism, Subtyping, and Type Inference in
MLsub. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming
Languages (POPL 2017). ACM, New York, NY,
USA, 60–72.
https://doi.org/10.1145/3009837.3009882

Research Problem

effect Decide : unit -> bool;;

let choose_all = handler
 | #Decide () k -> k true @ k false

| val x -> [x];;

with choose_all handle
 let x =

(if #Decide () then 10 else 20)
in
let y =

(if #Decide () then 0 else 5)
in
x - y

(* Output: [10; 5; 20; 15] *)

Introduction

Ongoing Work
Implementation
Integration into the Eff programming
language.

Metatheory
The metatheory is under development.

Other solutions
An unification based algorithm for
subtyping based type-&-effect
system. [10]

Based on calculus from
Links [7]
➔ row polymorphic

type-&-effect system

Other row-based systems
➔ Koka [6, 8]
➔ PureScript (with Eff

monad) [9]

The row-based effects are
based on row
polymorphism and natural
fit for effects.

Explicitly typed core
calculus and row-based
effects make the
source-to-source
transformations less
error-prone.

Algebraic effect handlers
A feature for side effects and
exception handlers on steroids
[1, 2]

Implementations have runtime
penalty
➔ handlers or continuations

need to be repeatedly copied
[3]

➔ Evaluation of effects

Elaborate into representation
without algebraic effect handlers

Work in Eff programming
language

Compilation of effect handlers
Terms in Eff do not contain explicit type
information [3]

Source-to-source transformations are
error prone

Ensuring transformations do not break
typability is time consuming

Example
function specialisation of handle (let rec)

x specialisation => expose optimisations
➔ Making copy of x and bring handler

inside body

The optimisation needs to correctly
handle types of the copy of x

n-queens: all solutions

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.2168/LMCS-9(4:23)2013
http://doi.acm.org/10.1145/2544174.2500590
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/3009837.3009872*
https://github.com/purescript/documentation/blob/master/guides/Eff.md
https://github.com/purescript/documentation/blob/master/guides/Eff.md
https://doi.org/10.1145/3009837.3009882

