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Algebraic effects and handlers are a very active area of research. An
100 important aspect is the development of an optimising compiler.
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A core language with row-based effects was introduced. The core language
IS explicitly typed in order to reduce bugs in the optimised compilation.
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let rec x _spec () =
handle (#0p ()) with
| #0p () kR -> k 1

in x_spec ()

The optimisation needs to correctly
handle types of the copy of x
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