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New Core Language

Background: Optimisations

Term rewrite rules
1. remove handlers / apply effects
2. expose optimisations

Purity aware compilation
Identify computations that are pure

➔         Free monad representation

➔         Regular OCaml code

Types of core calculus

Terms of core calculus

effect Op : unit -> int;;

let rec x () = #Op ();;

let result = 
handle (x ()) with

  | #Op () k -> k 1

effect Op : unit -> int;;

let rec x () = #Op ();;

let result = 
let rec x_spec () = 

handle (#Op ()) with
  | #Op () k -> k 1 
in x_spec ()

Source language

After function specialisation

Preliminary results
Eff compared to regular OCaml, 
Multicore Ocaml, HandlersInAction 
[4] and EffDirectlyInOCaml [5]

Need to add optimisations for edge 
cases

Summary

Algebraic effects and handlers are a very active area of research. An 
important aspect is the development of an optimising compiler. 

Without a type-&-effect system with explicit typing, it is easy for type 
checking bugs to be introduced during the construction of optimised 
compilation. 

A core language with row-based effects was introduced. The core language 
is explicitly typed in order to reduce bugs in the optimised compilation.
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Research Problem

effect Decide : unit -> bool;;

let choose_all = handler
  | #Decide () k -> k true @ k false

| val x -> [x];;

with choose_all handle
  let x = 

(if #Decide () then 10 else 20)
in
let y = 

(if #Decide () then 0 else 5)
in
x - y

(* Output: [10; 5; 20; 15] *)

Introduction

Ongoing Work
Implementation
Integration into the Eff programming 
language. 

Metatheory
The metatheory is under development.

Other solutions
An unification based algorithm for 
subtyping based type-&-effect 
system. [10]

Based on calculus from 
Links [7] 
➔ row polymorphic 

type-&-effect system

Other row-based systems
➔ Koka [6, 8]
➔ PureScript (with Eff 

monad) [9]

The row-based effects are 
based on row 
polymorphism and natural 
fit for effects.

Explicitly typed core 
calculus and row-based 
effects make the 
source-to-source 
transformations less 
error-prone.

Algebraic effect handlers
A feature for side effects and 
exception handlers on steroids 
[1, 2]

Implementations have runtime 
penalty
➔ handlers or continuations 

need to be repeatedly copied 
[3]

➔ Evaluation of effects

Elaborate into representation 
without algebraic effect handlers

Work in Eff programming 
language

Compilation of effect handlers
Terms in Eff do not contain explicit type 
information [3]

Source-to-source transformations are 
error prone

Ensuring transformations do not break 
typability is time consuming

Example
function specialisation of handle (let rec)

x specialisation => expose optimisations
➔ Making copy of x and bring handler 

inside body

The optimisation needs to correctly 
handle types of the copy of x

n-queens: all solutions
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